Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T03:50:20.168Z Has data issue: false hasContentIssue false

Photoluminescence in wurtzite GaN containing carbon

Published online by Cambridge University Press:  01 February 2011

Michael A. Reshchikov
Affiliation:
[email protected], Virginia Commonwealth University, Physics, 1020 West Main St, Richmond, VA, 23284, United States, 804-828-1613, 804-828-7073
Random H. Patillo
Affiliation:
[email protected], Virginia Commonwealth University, Physics, United States
Kathleen C. Travis
Affiliation:
[email protected], Virginia Commonwealth University, Physics, United States
Get access

Abstract

We studied photoluminescence (PL) from a set of GaN layers grown on sapphire substrates by metalorganic chemical vapor deposition with the concentration of carbon varied by the growth conditions. One of the remarkable features in these samples is the extremely low intensity of the shallow donor-acceptor pair band. Analysis of the PL data gives the shallow acceptor concentration of less than 1014 cm-3 in most of the C-doped GaN layers. This result shows that C does not form a shallow acceptor, CN, in appreciable concentrations in wurtzite GaN. As for the YL band, there is no clear correlation between its intensity and the degree of C-doping. The question of identification of the deep acceptor responsible for the YL band in undoped and C-doped GaN still remains to be solved.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. As, D. J., Pacheco-Salazar, D. G.., Potthast, S., and Lischka, K., Mater. Res. Soc. Symp. Proc. 798, Y8.2 (2004).CrossRefGoogle Scholar
2. Reshchikov, M. A. and Morkoç, H., J. Appl. Phys. 97, 061301 (2005).CrossRefGoogle Scholar
3. Glaser, E. R., Freitas, J. A. Jr., Shanabrook, B. V., and Koleske, D. D., Phys. Rev. B 68, 195201 (2003).CrossRefGoogle Scholar
4. Birkle, U., Fehrer, M., Kirchner, V., Einfeldt, S., Hommel, D., Strauf, S., Michler, P., and Gutowski, J., MRS Internet J. Nitride Semicond. Res. 4S1, G5.6 (1999).Google Scholar
5. Wright, A. F., J. Appl. Phys. 92, 2575 (2002).CrossRefGoogle Scholar
6. Seager, C. H., Wright, A. F., Yu, J., and Götz, W., J. Appl. Phys. 92, 6553 (2002).CrossRefGoogle Scholar
7. Armitage, R., Hong, W., Yang, Q., Feick, H., Gebauer, J., Weber, E. R., Hautakangas, S., and Saarinen, K., Appl. Phys. Lett. 82, 3457 (2003).CrossRefGoogle Scholar
8. Koleske, D. D., Wickenden, A. E., Henry, R. L. and Twigg, M. E., J. Cryst. Growth 242, 55 (2002).CrossRefGoogle Scholar
9. The SIMS data were provided by Gao, S-P. (EMCORE).Google Scholar
10. The electrical properties were provided by D. C. Look and Z.-Q. Fang (Wright State University).Google Scholar
11. Reshchikov, M. A., Moon, Y. T., and Morkoç, H., Phys. Stat. Sol. (c) 2, 27162719 (2005).CrossRefGoogle Scholar
12. Reshchikov, M. A., Moon, Y. T., Gu, X., Nemeth, B., Nause, J., and Morkoç, H., Unstable luminescence in GaN and ZnO, Presented at 23rd International Conference on Defects in Semiconductors, Awaji Island, Japan, July 2429, 2005, accepted for publication in Physica B.Google Scholar
13. Reshchikov, M. A. and Korotkov, R. Y., Phys. Rev. B 64, 115205 (2001).Google Scholar
14. Reshchikov, M. A., Gu, X., Nemeth, B., Nause, J., and Morkoç, H., High quantum efficiency of photoluminescence in GaN and ZnO, the Fall 2005 MRS meeting. To be published in Mat. Res. Soc. Symp. Proc. 892, FF23.12 (2006).Google Scholar
15. Korotkov, R. Y., Reshchikov, M. A., and Wessels, B. W., Physica B 325, 1 (2003).CrossRefGoogle Scholar
16. Saarinen, K., Suski, T., Grzegory, I., and Look, D. C., Phys. Rev. B 64, 233201 (2001).CrossRefGoogle Scholar