Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-13T00:49:54.697Z Has data issue: false hasContentIssue false

Photoluminescence from Single Porous Silicon Chromophores

Published online by Cambridge University Press:  09 August 2011

M. D. Mason
Affiliation:
Department of Chemistry, University of California, Santa Barbara, CA 93106-9510, [email protected]
G. M. Credo
Affiliation:
Department of Chemistry, University of California, Santa Barbara, CA 93106-9510, [email protected]
K. D. Weston
Affiliation:
Department of Chemistry, University of California, Santa Barbara, CA 93106-9510, [email protected]
S. K. Buratto
Affiliation:
Department of Chemistry, University of California, Santa Barbara, CA 93106-9510, [email protected]
Get access

Abstract

We spatially isolate and detect the luminescence from individual porous Si nanoparticles at room temperature. Our experiments show a variety of phenomena not previously observed in the emission from porous Si including a distribution of emission wavelengths, resolved vibronic structure, random spectral wandering, luminescence intermittency and irreversible photobleaching. Our results indicate that the emission from porous Si nanoparticles originates from excitons in quantum confined Si, strongly influenced by the surface passivating layer of the Si nanocrystal.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Canham, L. T., Appl. Phys. Lett. 57,1046 (1990).Google Scholar
2. Lehman, V., Gösele, U., Appl. Phys. Lett. 58, 865 (1991).Google Scholar
3. Collins, R. T., Fauchet, P. M., Tischler, M. A., Physics Today 50, 24 (1997).Google Scholar
4. A thorough review of previous spectroscopy experiments and the current understanding of porous Si luminescence can be found in a very recent review article: Cullis, A. G., Canham, L. T., Calcott, P. D. J., J. Appl. Phys. 82, 909 (1997).Google Scholar
5. Prokes, S. M., J. Appl. Phys. 73, 407 (1993).Google Scholar
6. Hybertsen, M. S., Phys. Rev. Lett. 72, 1514 (1994).Google Scholar
7. Brus, L. E., J. Phys. Chem. 98, 3575 (1994).Google Scholar
8. Wilson, W. L., Szajowski, P. F. and Brus, L. E., Science 262, 1242 (1993).Google Scholar
9. Efros, A. L., Rosen, M., Averboukh, B., Kovalev, D., Ben-Chorin, M. and Koch, F.,, Phys. Rev. B 56, 3875 (1997).Google Scholar
10. Muller, F., et al., J. Lumin. 57, 283 (1993).Google Scholar
11. Vial, J. C., et al., IEEE Trans. Nuc. Sci. 39, 563 (1992).Google Scholar
12. Dumas, P., et al., J. Vac. Sci. Technol. B 12, 2064 (1994).Google Scholar
13. Credo, G. M., Mason, M.D., Buratto, S.K., submitted.Google Scholar
14. Mason, M. D., Credo, G. M., Weston, K. D., Phys. Rev. Lett. 80, 5405 (1998).Google Scholar
15. Nirmal, M. et al., Nature 383, 802 (1996).Google Scholar
16. Empedocles, S. A., Norris, D. J., Bawendi, M. G., Phys. Rev. Lett. 77, 3873 (1996).Google Scholar
17. Cook, R. J., Kimble, H. J., Phys. Rev. Lett. 54, 1023 (1985).Google Scholar
18. Heinrich, J. L., Curtis, C. L., Credo, G. M., Kavanagh, K. L., Sailor, M. J., Science 255, 66 (1992).Google Scholar
19. Weston, K. D., Buratto, S. K., J. Phys. Chem. A 102, 3635 (1998).Google Scholar
20. The shear force technique described in Betzig, E., Finn, P. L., Weiner, J. S., Appl. Phys. Lett. 60, 2484 (1992) is commonly used as the distance regulation in near-field scanning optical microscopy (NSOM).Google Scholar
21. Sarid, D., Scanning Force Microscopy: With Applications To Electric, Magnetic, and Atomic Forces (Oxford University Press, New York 1991).Google Scholar
22. Sailor, M. J., Lee, E. J., Adv. Mater. 9, 783 (1997).Google Scholar
23. Brus, L. E. Phys. Rev. B 53, 4649 (1996).Google Scholar
24. Dubin, V. M., Osanam, F., Chazalviel, J.-N., Phys. Rev. B 50, 14867 (1994).Google Scholar