Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-28T08:56:56.525Z Has data issue: false hasContentIssue false

Photoluminescence and Raman spectra in Ga-doped ZnO layers on sapphire

Published online by Cambridge University Press:  01 February 2011

Michael A. Reshchikov
Affiliation:
[email protected], Virginia Commonwealth University, Department of Physics, 1020 West Main Street, Richmond, VA, 23284, United States, 804-828-1613, 804-828-7073
S. Nagata
Affiliation:
[email protected], Virginia Commonwealth University, Department of Physics, Richmond, VA, 23284, United States
J. Xie
Affiliation:
[email protected], SVT Associates, Inc., Eden Prairie, MN, 55344, United States
B. Hertog
Affiliation:
[email protected], SVT Associates, Inc., Eden Prairie, MN, 55344, United States
A. Osinsky
Affiliation:
[email protected], SVT Associates, Inc., Eden Prairie, MN, 55344, United States
Get access

Abstract

Ga-doped ZnO layers were grown on sapphire substrates by molecular beam epitaxy (MBE). Low-temperature photoluminescence (PL) and room-temperature Raman spectra were investigated. Defect-related modes at 277 and 510 cm−1 appeared in the Raman spectrum for Ga-doped layers. The PL spectrum is dominated by a donor-bound exciton peak at 3.356 eV. A weak yellow luminescence (YL) band peaking at 2.1-2.2 eV was studied in detail. It shifted to higher photon energies (up to 0.1 eV) with increasing excitation intensity. The YL band is attributed to transitions from shallow donors to a deep acceptor. The acceptor is thought to be a Zn vacancy-related defect because the intensity of the YL band decreased dramatically with Ga doping.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Özgür, Ü., Alivov, Ya. I., Liu, C., Teke, A., Reshchikov, M. A., Dogan, S., Avrutin, V., Cho, S.-J., and Morkoç, H., J. Appl. Phys. 98, 041301 (2005).Google Scholar
2. Reshchikov, M. A. and Morkoç, H., J. Appl. Phys. 97, 061301 (2005).Google Scholar
3. Harima, H., J. Phys.: Condens. Matter 14, R967 (2002).Google Scholar
4. Heo, Y. W., Norton, D. P., and Pearton, S. J., J. Appl. Phys. 98, 073502 (2005).10.1063/1.2064308Google Scholar
5. Djurišic, A. B., Leung, Y. H., Small 2, 944 (2006).10.1002/smll.200600134Google Scholar
6. Reshchikov, M. A., Gu, X., Nause, J., and Morkoç, H., Mater. Res. Soc. Symp. Proc. 892, FF23.11 (2006).Google Scholar
7. Decremps, F., J. Pellicer-Porres, Saitta, A. M., Chervin, J.-C., and Polian, A., Phys. Rev. B 65, 092101 (2002) and references therein.10.1103/PhysRevB.65.092101Google Scholar
8. Kaschner, A. et al., Appl. Phys. Lett. 80, 1909 (2002).Google Scholar
9. Bundesmann, C., Ashkenov, N., Schubert, M., Spemann, D., Butz, T., Kaidashev, E. M., Lorenz, M., and Grundmann, M., Appl. Phys. Lett. 83, 1974 (2003).10.1063/1.1609251Google Scholar
10. Alarcon-Llado, E., Cusco, R., Artus, L., Gonzalez-Diaz, G., Martil, I., Jimenez, J., Wang, B., and Callahan, M., Mater. Res. Sci. Symp. Proc. 957, K0724 (2007).Google Scholar
11. Ye, J. D., Gu, S. L., Zhu, S. M., Liu, S. M., Zheng, Y. D., Zhang, R., and Shi, Y., Appl. Phys. Lett. 86, 192111 (2005).10.1063/1.1928322Google Scholar
12. Meyer, B. K. et al. , Phys. Stat. Sol. (b) 241, 231 (2004).10.1002/pssb.200301962Google Scholar
13. Janotti, A. and Van de Walle, C. G., Phys. Rev. B 76, 165202 (2007).Google Scholar
14. Tuomisto, F., Ranki, V., Saarinen, K., and Look, D. C., Phys. Rev. Lett. 91, 205502 (2003).Google Scholar
15. Reshchikov, M. A., Appl. Phys. Lett., 88, 202104 (2006).Google Scholar
16. Stoehr, M., Juillaguet, S., Kyaw, T. M., and Wen, J. G., Phys. Stat. Sol. 4, 1432 (2007).Google Scholar
17. Liu, Z. F., Shan, F. K., Sohn, J. Y., Kim, S. C., Kim, K. Y., Li, Y. X., and Li, Y. S., J. of Electroceramics 13, 183 (2004).Google Scholar
18. Reshchikov, M. A., Yi, G.-C., and Wessels, B. W., Phys. Rev. B 59, 13176 (1999).Google Scholar
19. Reshchikov, M. A., Shahedipour, F., Korotkov, R. Y., Ulmer, M. P., and Wessels, B. W., J. Appl. Phys. 87, 3351 (2000).Google Scholar
20. Levanyuk, A. P. and Osipov, V. V., Sov. Phys. Usp. 24, 187 (1981).Google Scholar
21. Shklovskii, B. I. and Efros, A. L., Electronic Properties of Doped Semiconductors (Springer, Berlin, 1984), pp. 5373 and 253313.Google Scholar
22. Mott, N. F., Proc. Phys. Soc. London 62, 416 (1949).10.1088/0370-1298/62/7/303Google Scholar