Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-28T07:37:47.506Z Has data issue: false hasContentIssue false

Photoinduced Temporal Change of Surface-Potential Undulation on Alq3 Thin Films Observed by Kelvin Probe Force Microscopy

Published online by Cambridge University Press:  04 February 2011

Kazunari Ozasa
Affiliation:
Advanced Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
Hiromi Ito
Affiliation:
Advanced Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
Mizuo Maeda
Affiliation:
Advanced Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
Masahiko Hara
Affiliation:
Advanced Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
Get access

Abstract

The surface potential (SP) undulation on the surfaces of tris(8-hydroxyquinolinato) aluminum (III) (Alq3) films has been investigated with Kelvin probe force microscopy (KFM) and scanning near-field optical microscope (SNOM)-KFM. The SP undulation observed on the amorphous Alq3 films with thicknesses of up to 300 nm showed a cloud-like morphology of 200–300 nm in lateral size. The temporal change of SP undulation was traced through cyclic measurement with KFM observation with intermittent photoexposure, as well as in situ localized photoexcitation with SNOM-KFM. We concluded that the origin of the SP undulation is the nonuniform distribution of charged traps and drift mobility in the Alq3 films.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ito, E., Washizu, Y., Hayashi, N., Ishii, H., Matsuie, N., Tsuboi, K., Ouchi, Y., Harima, Y., Yamashita, K., and Seki, K., J. Appl. Phys., 92 (2002) 7306.Google Scholar
2. Sugi, K., Ishii, H., Kimura, Y., Niwano, M., Ito, E., Washizu, Y., Hayashi, N., Ouchi, Y., and Seki, K., Thin Solid Films 464 (2004) 412.Google Scholar
3. Ozasa, K., Nemoto, S., Isoshima, T., Ito, E., Maeda, M., and Hara, M., Surf. Interface Anal., 40 (2008) 579.Google Scholar
4. Ozasa, K., Nemoto, S., Isoshima, T., Ito, E., Maeda, M., and Hara, M., Appl. Phys. Lett., 93 (2008) 263304.Google Scholar
5. Ozasa, K., Nemoto, S., Maeda, M., Hara, M., J. Appl. Phys., 107 (2010) 103501.Google Scholar
6. Burrows, P. E., Shen, Z., Bulovic, V., McCarty, D. M., Forrest, S. R., Cronin, J. A., Thompson, M. E., J. Appl. Phys., 79 (1996) 7991.Google Scholar
7. Karg, S., Steiger, J., and von Seggern, H., Synthetic Metals, 111112 (2000) 277.Google Scholar
8. Werner, A. G., Blochwitz, J., Pfeiffer, M., and Leo, K., J. Appl. Phys., 90 (2001) 123.Google Scholar
9. Mori, T., Miyake, S., and Mizutani, T., Jpn. J. Appl. Phys., 34 (1995) 4120.Google Scholar
10. Fong, H., Lun, K., and So, S., Jpn. J. Appl. Phys., 41 (2002) L1122.Google Scholar
11. Nakano, Y., Noda, K., Fujikawa, H., and Morikawa, T., Jpn. J. Appl. Phys., 47 (2008) 464.Google Scholar
12. Noguchi, Y., Sato, N., Miyazaki, Y., and Ishii, H., Appl.Phys.Lett., 96 (2010) 143305.Google Scholar