Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-02T21:14:04.003Z Has data issue: false hasContentIssue false

Photocreated Defects and Light-Induced ESR in a-Si:H and Related Alloy Films

Published online by Cambridge University Press:  10 February 2011

Tatsuo Shimizu
Affiliation:
Faculty of Engineering, Kanazawa University, Kanazawa 920, Japan
Rudolf Durny
Affiliation:
Faculty of Engineering, Kanazawa University, Kanazawa 920, Japan
Minoru Kumeda
Affiliation:
Faculty of Engineering, Kanazawa University, Kanazawa 920, Japan
Get access

Abstract

Two major problems in the field of a-Si:H and related alloy films such as a-Sil-xNx:H are addressed in this contribution, namely, the photocreation of neutral Si dangling bonds and the origin of the components of the light-induced ESR (LESR). We have proposed a new model for the photocreation of neutral Si dangling bonds in a-Si:H based on the presence of floating bonds. The model can explain the metastabilization of the broken weak bonds without the movement of H atoms. The broad, the narrow, and the dangling bond components of the LESR signal have been attributed to holes captured at negatively charged floating bonds, electrons trapped at antibonding states of weak bonds and photoexcited carriers captured at charged dangling bonds, respectively.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Staebler, D.L. and Wronski, C.R., Appl. Phys. Lett. 31, 292 (1977).Google Scholar
2. Shimizu, T., J. Non-Cryst. Solids 164–166, 163 (1993).Google Scholar
3. Hirabayashi, I., Morigaki, K., and Nitta, S., Jpn. J. Appl. Phys. 19, L357 (1980).Google Scholar
4. Dersch, H., Stuke, J., and Beichler, J., Appl. Phys. Lett. 38, 456 (1981).Google Scholar
5. Pantelides, S.T., Phys. Rev. Lett. 57, 2979 (1986).Google Scholar
6. Stutzmann, M., Jackson, W.B., and Tsai, C.C., Phys. Rev. B 32, 23 (1985).Google Scholar
7. Adler, D., Solar Cells 9, 133 (1983).Google Scholar
8. Ishii, N., Kumeda, M., and Shimizu, T., Jpn. J. Appl. Phys. 24, L244 (1985).Google Scholar
9. Redfield, D. and Bube, R.H., Phys. Rev. Lett. 65, 464 (1990).Google Scholar
10. Morigaki, K., Jpn. J. Appl. Phys. 27, 163 (1988).Google Scholar
11. Yamasaki, S. and Isoya, J., J. Non-Cryst. Solids 164–165, 169 (1993).Google Scholar
12. Zhang, Q., Kumeda, M., and Shimizu, T., Jpn. J. Appl. Phys. 32, L371 Google Scholar
13. Zhou, J.H., Okagawa, T., Kumeda, M., and Shimizu, T., Jpn. J. Appl. Phys. 33, L1135 (1994).Google Scholar
14. Shimizu, T., Matsumoto, M., Yoshita, M., Iwami, M., Morimoto, A., and Kumeda, M., J. Non-Cryst. Solids 137–138, 391 (1991).Google Scholar
15. Stutzmann, M., Rossi, M.C., and Brandt, M.S., Phys. Rev. B 50, 11592 (1994).Google Scholar
16. Kamei, T., Kondo, M., Hata, N., Yoshioka, Y., Hirao, T., and Matsuda, A., Presented at the Spring Meeting of the Jpn. Soc. Appl. Phys. (1996).Google Scholar
17. Street, R.A. and Biegelsen, B.K., Solid State Commun. 33, 153 (1980).Google Scholar
18. Schumm, G., Lotter, E., and Bauer, G.H., Appl. Phys. Lett. 60, 3262 (1992).Google Scholar
19. Favre, M., Shah, A., Hubin, J., Bustarret, E., Hachicha, M.A., and Basrour, S., J. Non-Cryst. Solids 137–138, 335 (1991).Google Scholar
20. Ristein, J., Hautala, J., and Taylor, P.C., Phys. Rev. B 40, 88 (1989).Google Scholar
21. Salch, Z.M., Tarui, H., Ninimiya, K., Takahama, T., Nakashima, Y., Tsuda, S., Nakano, S., Kishi, Y., and Nakano, Y., Jpn. J. Appl. Phys. 31, 3801 (1992).Google Scholar
22. Schumm, G., Jackson, W.B., and Street, R.A., Phys. Rev. B 48, 14198 (1993).Google Scholar
23. Schumm, G. and Bauer, G.H., Phil. Mag. B 64, 515 (1991).Google Scholar
24. Powell, M.J. and Deane, S.C., Phys. Rev. B 48, 10815 (1993).Google Scholar
25. Ulber, I., Saleh, R., Fuhs, W., and Mell, H., J. Non-Cryst. Solids 190, 9 (1995).Google Scholar
26. Stiebig, H. and Siebke, F., Philos. Mag. B 72, 489 (1995).Google Scholar
27. Morimoto, A., Matsumoto, M., Kumeda, M., and Shimizu, T., Jpn. J. Appl.Phys. 29, L1747 (1990).Google Scholar
28. Zhou, J.H., Kumeda, M., and Shimizu, T., Jpn. J. Appl. Phys. 34, 3982 (1995).Google Scholar
29. Steward, A.D. and Jones, D.I., Phil. Mag. B 57, 431 (1988).Google Scholar
30. Kanicki, J., Warren, W.L., Seager, C.H., Crowder, M.S., and Lenahan, P.M.,J. Non-Cryst. Solids 137, 291 (1991).Google Scholar
31. Hasegawa, S., Matsuda, M., and Kurata, Y., Appl. Phys. Lett. 58, 74 (1991).Google Scholar
32. Shimizu, T. and Kumeda, M., Jpn. J. Appl. Phys. (submitted).Google Scholar
33. Katayama-Yoshida, H., private communication.Google Scholar
34. Umeda, T., Yamasaki, S., Isoya, J., and Tanaka, K., Abstracts of the 7th Jpn. Mater. Res. Soc. Symp. PA-5M (1995).Google Scholar
35. Morigaki, K., Jpn. J. Appl. Phys. 22, 375 (1983).Google Scholar
36. Saleh, Z.M., Tarui, H., Takahama, T., Nakamura, M., Nishikuni, M., Tsuda, S., Nakano, S., and Kuwano, Y., Jpn. J. Appl. Phys. 32, 3376 (1992).Google Scholar
37. Ishii, N. and Shimizu, T., Jpn. J. Appl. Phys. 27, L1800 (1988).Google Scholar
38. Fedders, P.A. and , A.E. +, Phys. Rev. B 37, 8506 (1988).Google Scholar