Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-28T17:39:33.087Z Has data issue: false hasContentIssue false

Photoconductivity of Discotic Liquid Crystals Derived from A Long-Chain Tetraphenylporphyrin

Published online by Cambridge University Press:  10 February 2011

Y. Shimizu
Affiliation:
Department of Organic Materials, Osaka National Research Institute (ONRI), AIST-MITI Midorigaoka 1-8-31, Ikeda, Osaka 563, Japan
H. Monobe
Affiliation:
Department of Organic Materials, Osaka National Research Institute (ONRI), AIST-MITI Midorigaoka 1-8-31, Ikeda, Osaka 563, Japan
S. Mima
Affiliation:
In undergraduate study course joined from Department of Material Chemistry, Ryukoku University
T. Higashiyama
Affiliation:
In graduate and undergraduate study course joined from Department of Solid-State Electronics, Osaka Electro-Communication University
T. Fuchita
Affiliation:
In graduate and undergraduate study course joined from Department of Solid-State Electronics, Osaka Electro-Communication University
T. Sugino
Affiliation:
Department of Organic Materials, Osaka National Research Institute (ONRI), AIST-MITI Midorigaoka 1-8-31, Ikeda, Osaka 563, Japan
Get access

Abstract

Photoconductivity of a mesogenic tetraphenylporphyrin (TPP) is shown in relation to the mesomorphic phase transition behavior. The TPP mesogen shows two types of mesophases having smectic-like order (lamellar mesophases : DL and DLC phases named in this work) and the photocurrent changes stepwise at the phase transitions with non-Arrhenius dependence whilst the darkcurrent tends to be Arrhenius. The hole mobility was measured for the random domain cell and was found to be faster than 10−4 cm2v−1sec−1 in the mesophases. The cell used for the photocurrent measurements was a sandwich-type one using two ITO glass slides as electrtodes and show rectification behavior for the crystal and the low-temperature mesophase (DLC) in contrast to non-rectification of photocurrent in the high-temperature mesophase (DL). These properties of charge carrier migration as an electronic process are profoundly related to molecular order as well as molecular motions in mesophase.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Guillon, D., Structure and Bonding, Vol.95, 41(Springer-Verlag, Berlin 1999).Google Scholar
2 Destrade, C., Tinh, N.H., Gasparoux, H., Malthete, J. and Levelut, A.M., Mol.Cryst.Liq. Cryst. 71, 111 (1981).Google Scholar
3 Kobayashi, A. and Kobayashi, H., Handbook of Organic Conductive Moleculaes and Polymers. Vol. 1. Charge-Transfer Salts, Fullerenes and Photoconductors, Ed. Nalwa, H.C., John Wiley & Sons, Chichester, 1997, p.249.Google Scholar
4 Adam, D., Haarer, D., Closs, F., Frey, T., Funhoff, D., Siemensmeyer, K., Schuhmacher, P. and Ringsdorf, H., Ber.Bunsenges.Phys.Chem., 97, 1366 (1993).Google Scholar
5 Schouten, P.G., Warman, J.M., Haas, M.P.de, Fox, M.A. and Pan, H.L., Nature, 353, 736 (1991).Google Scholar
6 Boden, N., Bushby, R.J. and Clements, J., J.Mater.Sci., 5, 83 (1994) and references cited therein.Google Scholar
7 Schouten, P.G., Warman, J.M., Haas, M.P.de, Nostrum, C.F.van, Gelinck, G.H., Nolte, R.J.M., Copyn, M.J., Zwikker, J.W., Engel, M.K., Hanack, M. and Ford, W.T., J.Am. Chem.Soc., 116, 6880 (1994).Google Scholar
8 Adam, D., Schuhmacher, P., Simmerer, J., Haussling, L., Siemensmeyer, K., Etzbach, K.H., Ringsdorf, H. and Haarer, D., Nature, 371, 141 (1993).Google Scholar
9 ThePorphyrins, Ed. Dolphin, D., Academy Press, New York, 1978.Google Scholar
10 Goodby, J.W., Robinson, P.S., Teo, B.K. and Cladis, P.E., Mol.Cryst.Liq.Cryst., 56, 303 (1980).Google Scholar
11 Gregg, B.A., Fox, M.A. and Bard, A.J., J.Am.Chem.Soc., 111, 3024 (1989).Google Scholar
12 Gregg, B.A., Fox, M.A. and Bard, A.J., J.Phys.Chem., 94, 1586 (1990).Google Scholar
13 Liu, C.Y., Pan, H.L., Tang, H., Fox, M.A. and Bard, A.J., J.Phys.Chem., 99, 7632 (1995).Google Scholar
14 Shimizu, Y., Miya, M., Nagata, A., Ohta, K., Yamamoto, I. and Kusabayashi, S., Liq.Cryst., 14, 795 (1993).Google Scholar
15 Shimizu, Y., Ishikawa, A. and Kusabayashi, S., Chem.Lett., 1041 (1986).Google Scholar
16 Sakashita, H., Nishitani, A., Sumiya, Y., Terauchi, H., Ohta, K. and Yamamoto, I., Mol.Cryst. Liq.Cryst., 163, 211 (1988).Google Scholar
17 Shimizu, Y. and Higashiyama, T., SPIE Proc. Int.Soc.Opt.Eng., 3319, 177 (1998).Google Scholar
18 Reiche, A., Gross, H. and Hbft, E., Chem.Ber., 93, 88 (1966).Google Scholar
19 Adler, A.D., Longo, F.R., Finarelli, J.D., Goldmacher, J., Assour, J. and Korsakoff, L., J.Org.Chem., 32, 476 (1967).Google Scholar
20 Rousseau, K. and Dolphin, D., Tetrahedron Lett., 48, 4251 (1974).Google Scholar
21 Barnet, G.H., Hudson, M.F. and Smith, K.M., J.Chem.Soc.Perkin Trans.I, 1401 (1975).Google Scholar
22 Tanimura, K., Kawai, T. and Sakata, T., J.Phys.Chem., 83, 2639 (1979).Google Scholar