No CrossRef data available.
Published online by Cambridge University Press: 10 February 2011
The ternary semiconductor GaAs1−xNx with 0 < x < 0.3 can be grown epitaxially on GaAs and has a very large bowing coefficient. The alloy bandgap can be reduced to about 1.0 eV with about a 3% nitrogen addition. In this work, we measlired the internal spectral response and recombination lifetime of a number of alloys using the ultra-high frequency photoconductive decay (UHFPCD) method. The data shows that the photoconductive excitation spectra of the GaAs0.97N0.03 alloy shows a gradual increase in response through the absorption edge near Eg. This contrasts with most direct bandgap semiconductors that show a steep onset of photoresponse at Eg. The recombination lifetimes frequently are much longer than expected from radiative recombination and often exceeded 1.0 µs. The data was analyzed in terms of a band model that includes large potential fluctuations in the conduction band due to the random distribution of nitrogen atoms in the alloy.