Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-02T23:19:14.703Z Has data issue: false hasContentIssue false

Photo-Assisted Chemical Beam Epitaxy of II-VI Semiconductors

Published online by Cambridge University Press:  25 February 2011

E. Ho
Affiliation:
Department of Electrical Engineering and Computer Science, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139
G. A. Coronado
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
L. A. Kolodziejski
Affiliation:
Department of Electrical Engineering and Computer Science, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139
Get access

Abstract

Photo-assisted epitaxy is a versatile growth technique which allows in situ modification of surface chemical reactions. Under appropriate growth conditions the surface stoichiometry can be tuned by selectively desorbing surface species, or by decomposing particular molecular species, or by affecting the reaction rate constant of a chemical process. A potential application of laser-assisted growth rate enhancement or growth rate retardation is in the area of maskless selective area epitaxy. We have investigated the effect of photons on the growth of ZnSe by solid and gaseous source molecular beam epitaxy using various combination of sources. Significant growth rate enhancement (up to 20x), as well as growth rate suppression (as much as 70%), have been observed depending on the sources employed. In all cases, the laser power density remained low (∼200 mW/cm2), and the creation of photo-generated carriers was found to be required. An electron beam incident to the surface has a similar effect and increased the growth rate.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Tu, C. W., Donnelly, V. M., Beggy, J. C., Baiocchi, F. A., McCrary, V. R., Harris, T. D., and Lamont, M. G., Appl Phys. Lett. 52, 968 (1988).CrossRefGoogle Scholar
2 Donnelly, V. M., Tu, C. W., Beggy, J. C., McCrary, V. R., Lamont, M. G., Harris, T. D., Baiocchi, F. A. and Farrow, R. C., Appl Phys. Leu. 52, 1067 (1988),.Google Scholar
3 Sugiura, H., Yamada, T., and Iga, R., Jpn. J. Appl Phys. 29, L1 (1990).Google Scholar
4 Nagata, K., Iimura, Y., Aoyagi, Y., and Namba, S., J. Cryst. Growth 105, 52 (1990).CrossRefGoogle Scholar
5 Nishizawa, J., Abe, H., Kurabayashi, T., and Sakurai, N., J. Vac. Sci. Technol. 54, 706 (1986).Google Scholar
6 Donnelly, V. M. and McCaulley, J. A., Appl Phys. Lett. 54, 2458(1989).Google Scholar
7 Aoyagi, Y., Kanazawa, M., Doi, A., Iwai, S., and Namba, S., J. Appl Phys. 60, 3131 (1986).Google Scholar
8 Kukimoto, H., Ban, Y., Komatsu, H., Takechi, M., and Ishizaki, M., J. Cryst Growth 77, 223(1986).Google Scholar
9 Bedair, S. M., Whisnant, J. K., Karam, N. H., Griffis, D., El-Masry, N. A., and Stadelmaier, H. H., J. Cryst. Growth 77, 229 (1986).Google Scholar
10 DenBaars, S. P. and Dapkus, P. D., J. Cryst. Growth 98, 195 (1989).Google Scholar
11 Iga, R., Sugiura, H., and Yamada, T., J. Appl Phys. 29, 475 (1990).Google Scholar
12 Yamada, T., Iga, R., and Sugiura, H., Appl Phys. Lett. 61, 2449 (1992).Google Scholar
13 Ban, Y., Ishizaki, M., Asaka, T., Koyama, Y., and Kukimoto, H., Jpn. J. Appl Phys. 28, L1995 (1989).Google Scholar
14 Epler, J. E., Chung, H. F., Treat, D.W., and Paoli, T. L., Appl Phys. Lett 52, 1499 (1988).Google Scholar
15 Liu, H., Roberts, J. C, Ramdani, J., Bedair, S. M., Farari, J., Vilcot, J. P., and Decoster, D., Appl Phys. Lett. 58, 388 (1991).Google Scholar
16 Chen, Q., Osinski, J. S., and Dapkus, P. D., Appl Phys. Lett. 57, 1437 (1990).Google Scholar
17 Liu, H., Roberts, J. C., Ramdani, J., and Bedair, S. M., Appl Phys. Lett. 58, 1659 (1991).Google Scholar
18 Ban, Y., Ishizaki, M., Asaka, T., Koyama, Y., and Kukimoto, H., Jpn. J. Appl Phys. 28, L1899 (1989).Google Scholar
19 Yamada, T., Iga, R., and Sugiura, H., Appl Phys. Lett 59, 958 (1991).Google Scholar
20 Fujita, Y., Terada, T., Fujii, S., and Iuchi, T., J. Cryst. Growth 107, 621 (1991).Google Scholar
21 Morris, B. J., Appl Phys. Lett. 48. 865 (1986).Google Scholar
22 Fujii, S., Fujita, Y., and Iuchi, T., J. Cryst. Growth 93, 750 (1988).Google Scholar
23 Zinck, J. J., Brewer, P. D., Jensen, J. E., Olson, G. L., and Tutt, L. W., Appl Phys. Lett. 52. 1434 (1988).Google Scholar
24 Bicknell, R. N., Giles, N. C., and Scheuina, J. F., Appl Phys. Lett. 49, 1095 (1986) :Google Scholar
Bicknell, R. N., Giles, N. C., and Schetzina, J. F., Appl Phys. Lett. 42, 1735 (1986) :Google Scholar
Harper, R. L. Jr, Hwang, S., Giles, N. C., Schetzina, J. F., Dreifus, D. L., and Myers, T. H.. Appl Phys. Lett. 4, 170 (1989).Google Scholar
25 Fujita, Sz., Tanabe, A., Sakamoto, T., Isemura, M., and Fujita, Sg., J. Cryst. Growth 93, 259 (1988).Google Scholar
26 Yoshikawa, A., Okamoto, T., Fujimoto, T., Onoue, K., Yamaga, S., and Kasai, H., Jpn. J. Appl Phys. 29, L225 (1990).CrossRefGoogle Scholar
27 Coronado, C. A., Ho, E., KoLodziejski, L. A., and Huber, C. A., Appl Phys. Lett. 61, 534 (1992).CrossRefGoogle Scholar
28 Park, R. M., Troffer, M. B., Rouleau, C. M., Depuydt, J. M. and Haase, M. A., Appl Phys. Lett. 52. 2127 (1990).CrossRefGoogle Scholar
29 Haase, M. A., Qui, J., DePuydt, J. M. and Cheng, H., Appl Phys. Lett. 59, 1272 (1991).Google Scholar
30 Jeon, H., Ding, J., Patterson, W., Nurmikko, A. V., Xie, W., Grillo, D. C, Kobayashi, M., and Gunshor, R. L., Appl Phys. Lett. 52, 3619 (1991).Google Scholar
31 Okuyama, H., Miyajima, T., Morinaga, Y., Hiei, F., Ozawa, M., and Akimoto, K., Electron. Lett. 28 1798 (1992).Google Scholar
32 Coronado, C. A., Ho, E., Kolodziejski, L. A., and Huber, C. A., Proceedings of the Materials Research Society Symposium, San Francisco, April, 1992.Google Scholar
33 Murrell, A. J., Wee, A. T. S., Fairbrother, D. H., Singh, N. K., Foord, J. S., Davies, G. J., and Andrews, D. A., J. Appl Phys. 68, 4053 (1990).Google Scholar
34 Murrell, A. J., Wee, A. T. S., Fairbrother, D. H., Singh, N. K., and Foord, J. S., J. Cryst Growth 105, 199 (1990).Google Scholar
35 Gunshor, R. L., Kolodziejski, L. A., Nurmikko, A. V., and Otsuka, N., Semiconductors and Semimetals, Vol. 33 (Pearsall, T. P.. Ed.) pp. 337400 (1990).Google Scholar
36 Simpson, J., Adams, S. J. A., Wallace, J. M., Prior, K. A., and Cavenett, B. C, Semicond. Sci. Technol. 2, 460 (1992).Google Scholar
37 Matsumura, N., Fukada, T., and Saraie, J., J. Cryst. Growth 101, 61 (1990).Google Scholar
38 Yoshikawa, A., Okamoto, T., Fujimoto, T., Onoue, K., Yamaga, S., and Kasai, H., Jpn. J. Appl Phys. 29, L225 (1990).Google Scholar
39 Hou, H., Zhang, Z., Ray, U., and Vernon, M., J. Chem. Phys. 92, 1728 (1990).Google Scholar
40 Fujita, Sz., Marno, S., Ishio, H., Murawala, P., and Fujita, Sg., J. Cryst. Growth 107, 644 (1991).Google Scholar
41 Coronado, C. A., Ho, E., and Kolodziejski, L. A., paper presented at the VII International Conference on Molecular Beam Epitaxy, Schwäbisch Gmünd, Germany, August 24–29, 1992 (to appear in J. Cryst. Growth).Google Scholar
42 Takahashi, T., Arakawa, Y., Nishioka, M., and Ikoma, T., Appl Phys. Lett. 60, 68 (1992).Google Scholar