Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-26T03:43:39.466Z Has data issue: false hasContentIssue false

Phosphorus-Vacancy-Related Deep Levels in Gainp Layers Grown by Molecular Beam Epitaxy

Published online by Cambridge University Press:  22 February 2011

Z.C. Huang
Affiliation:
Department of Electrical and Computer Engineering and Center for Electronic and Electro-optic Materials, State University of New York at Buffalo, Bonner Hall, Buffalo, NY 14260
C.R. Wie
Affiliation:
Department of Electrical and Computer Engineering and Center for Electronic and Electro-optic Materials, State University of New York at Buffalo, Bonner Hall, Buffalo, NY 14260
J.A. Varriano
Affiliation:
The Institute of Optics, University of Rochester, Rochester, NY 14627
M.W. Koch
Affiliation:
The Institute of Optics, University of Rochester, Rochester, NY 14627
G.W. Wicks
Affiliation:
The Institute of Optics, University of Rochester, Rochester, NY 14627
Get access

Abstract

Deep levels in lattice matched Ga0.51In0.49P/GaAs heterostructure have been investigated by thermal-electric effect spectroscopy(TEES) and temperature dependent conductivity measurements. Four samples were grown by molecular beam epitaxy with various phosphorus (P2) beam equivalent pressure(BEP) of 0.125, 0.5, 2, and 4×10−4 Torr. We report for the first time, to our knowledge, an electrical observation of phosphorus vacancy point defects in the GaInP/GaAs material system. The phosphorus vacancies, Vp. behave as an electron trap which is located at EC−0.28±0.02 eV. We have found that this trap dominates the conduction band conduction when T> 220K, and is responsible for the variable-range hopping conduction when T < 220K. Its concentration decreases with the increasing phosphrous BEP. Successive rapid thermal annealing showed that its concentration increases with the increasing annealing temperature. Another electron trap at EC−0.51eV was also observed only in samples with P2 BEP less than 2×10−4 Torr. Its capture cross section is 4.5×10−15 cm 2 as obtained from the illumination time dependent TEES spectra.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Olson, J.M. Kurtz, S. Kibbler, A.E. andFaine, P. Appl. Phys. Lett., 56, 623 (1990).CrossRefGoogle Scholar
2. Kawai, H. Kobayashi, T. Nakamura, F., andTaira, K. Electron. Lett., 25, 609 (1989).Google Scholar
3. Shikawa, M.I. Ohba, Y. Sugawara, H. Yamamoto, M. andNakanishi, T. Appl. Phys. Lett., 48, 20 (1986).Google Scholar
4. Feng, S.L. Bourgion, J.C. Omnes, F. andRazeghi, M. Appl. Phys. Lett., 59, 941 (1991).CrossRefGoogle Scholar
5. Paloura, E.C. Ginoudi, A. Kiriakidis, G. Frangis, N. Scholz, F. Moser, M. andChriston, A. Appl., Phys. Lett., 60, 2749 (1992).CrossRefGoogle Scholar
6. Wicks, G.W. Koch, M.W. Varriano, J.A. Johnson, F.G. Wie, C.R. Kim, H.M. andColombo, P. Appl. Phys. Lett., 59, 342 (1991).CrossRefGoogle Scholar
7. Huang, Z.C. Xie, K. andWie, C.R. Rev. Sci. Instrum., 62(8) 1951 (1991)Google Scholar
8. Mott, N.F. J. Non-cryst. Solods 1, 1 (1968).CrossRefGoogle Scholar
9. Look, D.C. Fang, Z-Q., Phys. Rev. B 47, 1441 (1993).CrossRefGoogle Scholar
10. Xie, K. Huang, Z.C. andWie, C.R. J. Electron. Mater., 20, 553 (1991).Google Scholar
11. Kennedy, T.A. andSpencer, M.G. Phys. Rev. Lett., 57, 2690 (1986).Google Scholar
12. Buisson, J.P. Allen, R.E. andDow, J.D. Solid State Comm., 43, 833 (1982).CrossRefGoogle Scholar
13. Thompson, T.D., Barbara, J., Ridgway, M.C., J. Appl. Phys., 71 6073 (1992)CrossRefGoogle Scholar
14. Frandon, J., Fabre, F., Bacquet, G., Bandet, J. and Reynaud, F., J. Appl. Phys., 59 1627 (1986)Google Scholar
15. Min, S.K. Kim, E.K. Cho, H.Y. J. Appl. Phys., 63, 4422 (1988).CrossRefGoogle Scholar
16. Tomozane, M. Nannichi, Y. Onodera, I. Fukase, T. and Hasegawa, F., Jpn. J. Appl. Phys., 27 260 (1988)Google Scholar
17. Desnica, U.V. andSantic, B. Appl. Phys. Lett., 54, 810 (1989).Google Scholar
18. Fang, Z.Q. Shan, L., Schlesinger, T.E. andMilnes, A.G. Mater. Sci. Engi., B 5, 397 (1990).CrossRefGoogle Scholar
19. Desnica, U.V. Desnica, D.I. andSantic, B. Appl. Phys. Lett., 58, 278 (1991).CrossRefGoogle Scholar