Published online by Cambridge University Press: 31 January 2011
Hafnium(IV) oxide (HfO2) has replaced silicon oxide as a gate dielectric material in leading edge CMOS technology, providing significant improvement in gate performance for field effect transistors (FETs). We are currently exploring this high-k dielectric for its use in nucleic acid-based FET biosensors. Due to its intrinsic negative charge, label-free detection of DNA can be achieved in the gate region of high-sensitivity FET devices. Previous work has shown that phosphates and phosphonates coordinate specifically onto metal oxide substrates including aluminum and titanium oxides. This property can therefore be exploited for direct immobilization of biomolecules such as nucleic acids. Our work demonstrates that 5’ phosphate-terminated single stranded DNA (ssDNA) can be directly immobilized onto HfO2 surfaces, without the need for additional chemical modification or crosslinking. Non-phosphorylated ssDNA does not form stable surface interactions with HfO2, indicating that immobilization is dependent upon the 5’ terminal phosphate. Further work has shown that surface immobilized ssDNA can be hybridized to complementary target DNA and that sequence-based hybridization specificity is preserved. These results suggest that the direct DNA-HfO2 immobilization strategy can enable nucleic acid-based biosensing assays on HfO2 terminated surfaces. This work will further enable high sensitivity electrical detection of biological targets utilizing transistor-based technologies.