Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T02:55:35.911Z Has data issue: false hasContentIssue false

Phonons at Martensitic Phase Transitions of bcc-Ti, bcc-Zr and bcc-Hf

Published online by Cambridge University Press:  21 February 2011

W. Petry
Affiliation:
Institut Laue-Langevin, 156X, 38042 Grenoble Cedex, France
A. Heiming
Affiliation:
Institut Laue-Langevin, 156X, 38042 Grenoble Cedex, France Freie Universität Berlin, Fachbereich Physik, D-1000 Berlin, FRG
J. Trampenaux
Affiliation:
Institut Laue-Langevin, 156X, 38042 Grenoble Cedex, France Institut für Metallforschung, Univ. MUnster, D-4400 Münster, FRG
Get access

Abstract

Inelastic neutron scattering on in situ grown bcc single crystals of the group 4 metals Ti, Zr and Hf show a band of low energy and strongly damped phonons. Geometrical considerations show how these damped lattice vibrations achieve the displacements necessary for the two martensitic phase transitions from bcc to ω(under pressure) and from bcc to hcp (upon lowering the temperature). The low energy and temperature dependent phonons are precursor fluctuations of the hcp or ω phase within the bcc phase.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. La makes a certain difference. Its high temperature bcc phase transforms into two steps into different close packed structures. At 865°C, it transforms to fcc, which again at 336°C transforms to double hcp.Google Scholar
2. Sikka, S., Vahra, Y.K., and Chidambaram, P., Progress in Material Science 27, 245 (1982).CrossRefGoogle Scholar
3. Christian, J.W., Theory of Tranformations in Metals and Alloys. 2nd ed. (Pergamon Press, Oxford, 1975) p. 12.Google Scholar
4. Satija, S.K., Shapiro, S.M., Salamon, M.B. and Wayman, C.M., Phys. Rev. B 22, 6031 (1984).CrossRefGoogle Scholar
5. Tietze, H., Müllner, M. and Renker, B., J. Phys. C. 11. L529 (1984).CrossRefGoogle Scholar
6. Müllner, M., Tietze, H., Eckold, G. and Assmus, W., Proc. Int. Conf. on Martensitic Transformations, ICOMAT 86. Nara (Japan), ed. by Tamura, I. (The Japan Inst. of Metals) p. 159 (1987).Google Scholar
7. Shapiro, S.M., Yang, B.X., Shirane, G., Noda, Y. and Tanner, L.E., Phys. Rev. Lett. 62, 1298 (1989).CrossRefGoogle Scholar
8. Gooding, R.J. and Krumhansl, J.A., Phys. Rev. B. 39 1535 (1989).CrossRefGoogle Scholar
9. Moss, S.C., Keating, D.T., Axe, J.D., in Phase Transitions, ed. by Cross, L.E. (Pergamon, New York) p. 179 (1973).Google Scholar
10. Axe, J.D., Keating, D.T. and Moss, S.C., Phys. Rev. Lett. 35, 530 (1975).CrossRefGoogle Scholar
11. Noda, Y., Yamada, Y. and Shapiro, S.M., Phys. Rev. B 40, 5995 (1989).CrossRefGoogle Scholar
12. Ernst, G., Artner, C., Blaschko, O. and Krexner, G., Phys. Rev. B 33, 6465 (1986).CrossRefGoogle Scholar
13. Smith, H.G., Phys. Rev. Lett. 58, 1228 (1987).CrossRefGoogle Scholar
14. Gooding, R.J. and Krumhansl, J.A., Phys. Rev. B. 38, 1695 (1989).CrossRefGoogle Scholar
15. Blaschko, O. and Krexner, G., Phys. Rev. B 30, 1667 (1984).CrossRefGoogle Scholar
16. lizumi, M., J. Phys. Soc. of Japan 52, 549 (1983).Google Scholar
17. Blaschko, O., Krexner, G., Pleschiutschnig, J., Ernst, G., Hitzenberger, C., Karnthaler, H.P. and Korner, A., Phys. Rev. Lett. 60, 2800 (1988).CrossRefGoogle Scholar
18. Ye, Y.-Y., Chen, Y., Ho, K.-M., Harmon, B.N. and Lindgard, P.-A., Phys. Rev. Lett. 58, 1769 (1987).CrossRefGoogle Scholar
19. Chen, Y., Ho, K.-M. and Harmon, B.N., Phys. Rev. B 37, 283 (1988).CrossRefGoogle Scholar
20. Lindgard, P.-A. and Mouritsen, O.G., Phys. Rev. 57, 2458 (1986).Google Scholar
21. Krumhansl, J.A. and Gooding, R.J., Phys. Rev. B 39, 3047 (1989).CrossRefGoogle Scholar
22. Kerr, W.C. and Bishop, A.R., Phys. Rev. B 34, 6295 (1986).CrossRefGoogle Scholar
23. Petry, W., Flottmann, T., Heiming, A., Trampenau, J., Alba, M. and Vogl, G., Phys. Rev. Lett. 61, 722 (1988).CrossRefGoogle Scholar
24. Heiming, A., Petry, W., Trampenau, J., Alba, M., Herzig, C., and Vogl, G., Phys. Rev. B (1989), in press.Google Scholar
25. Heiming, A., Petry, W., Trampenau, J., Alba, M., Herzig, C., Schober, H.R. and Vogl, G., to be published.Google Scholar
26. Trampenau, J., Petry, W., Heiming, A., Alba, M., Herzig, C., Miekelei, W. and Schober, H.R., to be published.Google Scholar
27. Flottmann, T., Petry, W., Serve, R. and Vogl, G., Nucl. Instrum. & Methods. A 260, 165 (1987).CrossRefGoogle Scholar
28. Stassis, C., Zarestky, J. and Wakabayashi, N., Phys. Rev. Lett. 41, 1726 (1978).CrossRefGoogle Scholar
29. Stassis, C. and Zarestky, J., Solid State Comm. 52, 9 (1984).CrossRefGoogle Scholar
30. Fontaine, D. de and Buck, O., Phil. Mag. 27, 967 (1973).CrossRefGoogle Scholar
31. Lovesey, S.W., Theory of Neutron Scattering from Condensed Matter, Vol. 1 (Oxford Science Publ., Oxford, 1986) p. 299.Google Scholar
32. Falter, C., Physics Reports 164, 1 (1988).CrossRefGoogle Scholar
33. Ho, K.-M., Fu, C.-L. and Harmon, B.N., Phys. Rev. B 28, 6687 (1983); 29, 1575 (1984).CrossRefGoogle Scholar
34. Schober, H.R. and Dederichs, P.H. in Landolt-Börnstein, New Series, Group III, Vol. 13a (Springer Verlag, Berlin, 1981) and references therein.Google Scholar
35. Stassis, C. in Axe, J.D. and Nicklow, R.M., Physics Today, Jan. 1985, p. 27.Google Scholar
36. Burgers, W.G., Physica 1, 561 (1934).CrossRefGoogle Scholar