Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-12-01T07:19:45.886Z Has data issue: false hasContentIssue false

Phonon Decay in GaN and AlN and Self-Heating in III-N Devices

Published online by Cambridge University Press:  01 February 2011

Mark Holtz
Affiliation:
[email protected], Texas Tech Univeristy, Nano Tech Center, Department of Physics MS1051, Lubbock, TX, 79409-1051, United States, 8067421258, 8067428061
D. Y. Song
Affiliation:
[email protected], Texas Tech University, Lubbock, TX, 79409, United States
S. A. Nikishin
Affiliation:
[email protected], Texas Tech University, Lubbock, TX, 79409, United States
V. Soukhoveev
Affiliation:
[email protected], TDI, Inc., Silver Spring, MD, 20904, United States
A. Usikov
Affiliation:
[email protected], TDI, Inc., Silver Spring, MD, 20904, United States
V. Dmitriev
Affiliation:
[email protected], TDI, Inc., Silver Spring, MD, 20904, United States
E. Mokhov
Affiliation:
[email protected], Fox Group, Piedmont, CA, 94610, United States
U. Makarov
Affiliation:
[email protected], Fox Group, Piedmont, CA, 94610, United States
H. Helava
Affiliation:
[email protected], Fox Group, Piedmont, CA, 94610, United States
Get access

Abstract

We report studies of the temperature dependence of Raman lines in high quality GaN and AlN. The temperature dependence of the phonon energies and linewidths are used to produce consistent phonon decay properties of zone center optic phonons. In GaN we observe the E22 phonon to decay into three phonons, while the A1(LO) phonon is well described according to the so-called Ridley process – one TO and one LA phonon. For AlN the E22 phonon decays by two phonon emission and the A1(LO) line also exhibits a dependence consistent with the Ridley process. Along with the phonon decay processes, it is important in each case to take into account the contribution of the thermal expansion, including the temperature dependence, to describe observed temperature shifts in the phonon properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Vitusevich, S. A., Danylyuk, S. V., Klein, N., Petrychuk, M. V., Avksentyev, A. Y., Sokolov, V. N., Kochelap, V. A., Belyaev, A. E., Tilak, V., Smart, J., Vertiatchikh, A., and Eastman, L. F., Appl. Phys. Lett. 82, 748 (2003).Google Scholar
2. Ahmad, I., Kasisomayajula, V., Holtz, M., Berg, J. M., Kurtz, S. R., Tigges, C. P., Allerman, A. A., and Baca, A. G., Appl. Phys. Lett 86, 173503 (2005).Google Scholar
3. Pomeroy, J. W., Kuball, M., Uren, M. J., Hilton, K. P., Balmer, R. S., and Martin, T., Appl. Phys. Lett. 88, 023507 (2006).Google Scholar
4. Turin, V. O. and Balandin, A. A., J. Appl. Phys. 100, (2006).Google Scholar
5. Ahmad, I., Kasisomayajula, V., Song, D. Y., Tian, L., Berg, J. M., and Holtz, M., J. Appl. Phys. 100, 1123718 (2006).Google Scholar
6. Klemens, P. G., Phys. Rev. 148, 845 (1966).Google Scholar
7. Ridley, B. K., Journal of Physics-Condensed Matter 8, L511 (1996).Google Scholar
8. Link, A., Bitzer, K., Limmer, W., Sauer, R., Kirchner, C., Schwegler, V., Kamp, M., Ebling, D. G., and Benz, K. W., J. Appl. Phys. 86, 6256 (1999).Google Scholar
9. Chen, X. B., Huso, J., Morrison, J. L., Bergman, L., and Purdy, A. P., J. Appl. Phys. 98, 026106 (2005).Google Scholar
10. Song, D. Y., Basavaraj, M., Nikishin, S., Holtz, M., Soukhoveev, V., Usikov, A., and Dmitriev, V., J. Appl. Phys. 100, 113504 (2006).Google Scholar
11. Kuball, M., Hayes, J. M., Shi, Y., and Edgar, J. H., Appl. Phys. Lett. 77, 1958 (2000).Google Scholar
12. Song, D. Y., Holtz, M., Chandolu, A., Nikishin, S. A., Mokhov, E. N., Makarov, Y., and Helava, H., Appl. Phys. Lett. 89, (2006).Google Scholar
13. Wang, K. and Reeber, R. R., Thermal expansion of GaN and AlN, Edited by F. A. Ponce et al. 482 (Materials Research Society Symposium Proceedings, Warrendale, PA, 1998), p. 863868.Google Scholar
14. Segal, A. S., Karpov, S. Y., Makarov, Y. N., Mokhov, E. N., Roenkov, A. D., Ramm, M. G., and Vodakov, Y. A., J. Crystal Growth 211, 68 (2000).Google Scholar
15. Usikov, A. S., Melkik, Yu., Pechnikov, A. I., Soukhoveev, V. A., Kovalenkov, O., Shapovalova, O. V., Karpov, S. Yu., and Dmitriev, V., in UV Solid-State Light Emitters and Detectors, Edited by Shur, M. and Zukauskas, A. (Kluwer, Amsterdam, 2004).Google Scholar
16. Ruf, T., Serrano, J., Cardona, M., Pavone, P., Pabst, M., Krisch, M., D‘Astuto, M., Suski, T., Grzegory, I., and Leszczynski, M., Phys. Rev. Lett. 86, 906 (2001).Google Scholar
17. Davydov, V. Yu., Kitaev, Yu. E., Goncharuk, I. N., Smirnov, A. N., Graul, J., Semchinova, O., Uffmann, D., Smirnov, M. B., Mirgorodsky, A. P., and Evarestov, R. A., Phys. Rev. B 58, 12899 (1998).Google Scholar