Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-27T02:46:44.918Z Has data issue: false hasContentIssue false

Phenomena Rlated to Concurrent Multiple Complex Plane Representations of the Immittance Data

Published online by Cambridge University Press:  10 February 2011

Mohammad A. Alim*
Affiliation:
Hubbell Incorporated, The Ohio Brass Company 8711 Wadsworth Road, Wadsworth, Ohio 44281
Get access

Abstract

The concurrent multiple complex plane representation of the single/multiple semicircular relaxation(s) for the same immittance data provides a choice of selecting simultaneously operative phenomena within a heterogeneous system. The origin of this representation and the selection criteria of the phenomena are highlighted via structure-property-processing relationships. These include the development of a single equivalent circuit model by acquiring knowledge on the type of aterials, history, chemistry, composition, processing variables, microstructures, etc. The correspondence within the complex planes is attributed to the relative magnitudes of the contributing elements in the equivalent circuit model and dominance of the operative phenomena. The limitations concerning the transformation of the data from one complex plane to the other are reviewed, considering Debye/non-Debye conduction processes within the series-parallel microstructural network of electrical paths.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ahim, M. A., Act. Pass. Elect. Comp. 19, xxx (1996).Google Scholar
2. (a) Seitz, M. A., Int. J. Hybr. Microelect. 3, 1 (1980); (b) J. J. Ackman and M. A. Seitz, CRC Crit. Rev. Biomed. Engr. 11, 281 (1984).Google Scholar
3. (a) Jonscher, A. K., Dielectric Relaxation in Solids, Chelsea Dielectrics, London (1983). (b) H. W. Bode, Network Analysis and Feedback Amplifier Design, Van Nostrand, New York (1945).Google Scholar
4. (a) Losee, D. L., Appl. Phys. Lett. 21 54 (1972). (b) D. L. Losee; J. Appl. Phys. 46, 2204 (1975). (c) G. Vincent, D. Bois, and P. Pinard, J. Appl. Phys. 46, 5173 (1975). (d) G. Vincent, A. Chantre, and D. Bois, J. Appl. Phys. 50, 5484 (.1979).Google Scholar
5. Beiser, A., Concepts of Modern Physics, Fourth Edition, McGraw-Hill Book Company, New York (1987).Google Scholar
6. (a) Wang, C. C., Patton, V. D., Akbax, S. A., and Airm, M. A., J. Mat. Res. 11, 422 (1996). (b) V. D. Patton, C. C. Wang, S. A. Akbar, and M. A Alim, J. Appl. Phys., 78, 1757 (1995). (c) C. C. Chen, M. M. Nasrallah, H. U. Anderson, and M. A.Alim, J. Electrochem. Soc. 142, 491 (1995). (d) A. M. Azad, S. A. Akbar, L. B. Younkman, and M. A. Alim, J. Am. Ceram. Soc., 77, 3145 (1994). (e) A. M. Azad, L. B. Younkman, S. A. Akbar, and M. A. Alim, J. Am. Ceram. Soc. 77, 481 (1994). (f) M. A. Alim, J. Am. Ceram. Soc. 72, 28 (1989). (g) M. A. Alim, M. A. Seitz, and R. W. Hirthe, J. Appl. Phys. 63, 2337 (1988). (h) J. R. Macdonald, J. Appl. Phys. 65, 4845 (1989). (i) D. C. Sinclair and A. R. West, J. Appl. Phys. 66, 3850 (1989). (j) W. Jakubowski and D. H. Whitmore, J. Am. Ceram. Soc. 62, 381 (1979). (k) H. J. de Bruin and S. P. S. Badwal, J. Aust. Ceram. Soc. 14, 20 (1978). (l) F. A. Grant, J. Appl. Phys. 29, 76 (1958).Google Scholar
7. Lang, D. V., J. AppL. Phys. 45, 3023 (1974).Google Scholar
8. Cole, K. S. and Cole, R. H., J. Csem. Phys. 9, 341 (1941).Google Scholar
9. Macdonald, J. R., Electrochim. Acta 35, 1483 (1990).Google Scholar
10. (a) Alim, M. A. and Akbar, S. A., “Immittance Data Acquisition and Analytical Software Package,” Developed at The Ohio State University, Columbus, Ohio (1992). (b) D. W. Marquardt, J. Soc. Indust. Appl. Math. (Am. Math.) 11, 431 (1963). (c) K. Levenberg, Quart. Appl. Math. 2, 164 (1944). (d) Y. T. Tsai and W. H. Whitmore, Sol. St. Ion., 7, 129 (1982). (e) W. Schreiner, M. Kramer, S. Krischer, and Y. Langsam, PC Tech Journal (IBM) pp 170–185, May 1985. (f) J. R. Macdonald, Sol. St. Ion. 58, 97 (1992). (g) J. R. Macdonald and A. J. Garber, J. Electrochem. Soc. 124, 1022 (1977). (h) J. R. Macdonald, J. Schoonman, and A. P. Lehnen, J. Electroanal. Chem. 131, 77 (1982). (i) R. D. Armstrong, M. F. Bell, and A. A. Metcalfe, J. Electroanal. Chem., 77, 287 (1977). (j) B. A. Boukamp, “Equivalent Circuit (EQUIVCRT.PAS),” User's Manual, Second Revised Edition, Report: CT88/265/128 and CT89/214/128, Department of Chemical Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, Netherlands, May 1989. (k) B. A. Boukamp, Sol. St. Ion. 11, 339 (1984). (l) S. Bhatnagar, S. Gupta, and K. Shahi, Sol. St. Ion. 31, 107 (1988).Google Scholar