Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T10:59:12.587Z Has data issue: false hasContentIssue false

Phase-Selective Synthesis of Calcium Carbonate Polymorphs

Published online by Cambridge University Press:  15 February 2011

Kenneth M. Doxsee
Affiliation:
Department of Chemistry, University of Oregon, Eugene, OR 97403
Robin L. Saulsbery
Affiliation:
Department of Chemistry, University of Oregon, Eugene, OR 97403
Get access

Abstract

Through the use of solubilizing agents, simple salt metathesis reactions may be translated from aqueous solution to the milieu of organic solvents. When applied to the crystallization of calcium carbonate through the reaction of calcium chloride with sodium bicarbonate in “complexation-mediated” crystallization leads to the selective formation of a metastable phase, vaterite, rather than to calcite, the phase obtained from aqueous solution. Impacts on the formation of the third anhydrous phase of calcium carbonate, aragonite, are also noted. These studies suggest an additional mechanism whereby Nature may control the morphology and phase of the calcium carbonate biominerals.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Lowenstam, H. A. and Weiner, S., On Biomineralization, Oxford University Press, New York, 1989.Google Scholar
2. Lahiri, J., Xu, G. F., Dabbs, D. M., Yao, N., Aksay, I. A., and Groves, J. T., J. Am. Chem. Soc. 119, 54495450 (1997); R. J. Davey and T. Hirai, J. Cryst. Growth 171, 318–320 (1997); J. Gomez-morales, J. Torrentburgues, and R. Rodriguez-clemente, J. Cryst. Growth 169, 331–338 (1996).Google Scholar
3. Heywood, B. R. and Mann, S., Adv. Mater. 6, 920 (1994); S. Mann and L. Addadi, TIBS 1, 252–256 (1991); S. Mann, B. R. Heywood, S. Rajam, and J. D. Birchall, Nature 334, 692–695 (1988); A. Berman, D. J. Ahn, A. Lio, M. Salmeron, A. Reichert, and D. Charych, Science 269, 515–518 (1995); J. Aizenberg, J. Hanson, T. F. Koetzel, L. F. Leiserowitz, and S. Weiner, Chem. Eur. J. 1, 414–422 (1995).Google Scholar
4. Heuer, A. H., Fink, D. J., Laraia, V. J., Arias, L. J., Calvert, P. H., Kendell, K., Messing, G. L., Blackwell, J., Rieke, P. C., Thompson, D. H., Wheeler, A. P., Veis, A., and Caplan, A. I., Science 255, 10981112 (1992); G. Falini, M. Gazzano, and A. Ripamoni, Adv. Mater. 6, 46–48 (1994); S. Rajum, B. R. Heywood, J. B. A. Walker, S. Mann, R. J. Davey, and J. D. Birchall, J. Chem. Soc., Faraday Trans. 87, 727–734 (1991).Google Scholar
5. Interesting results of solvent-free metathesis reactions have been reported: Kaner, R., Mater. Res. Soc. Symp. Proc. 327, 227232 (1994); E. G. Gillan, R. Kaner, Inorg. Chem. 33, 5693–5700 (1994).Google Scholar
6. Doxsee, K. M. and Stevens, R., J. Inclusion Phenomena 9, 327336 (1990).Google Scholar
7. Doxsee, K. M., Chang, R. C., Chen, E., Myerson, A. S., and Huang, D., submitted for publication; K. M. Doxsee and M. Jang, submitted for publication.Google Scholar
8. Doxsee, K. M., Keegan, D. S., Wierman, H. R., Hagadorn, J., Arimura, M., Pure Appl. Chem. 65, 429 (1993).Google Scholar
9. Doxsee, K. M., U.S. Patent 5,545,394, 13 August, 1996.Google Scholar
10. Kitano, Y., Bull. Chem. Soc. Jpn. 35, 19801985 (1962); W. L. De Keyser and L. Degueldre, Bull. Soc. Chim. Belg. 59, 40–71 (1950).Google Scholar
11. An interesting report of the competitive formation of calcite and aragonite in aqueous poly(ethylene glycol) solution has recently appeared: Hu, Z., Fan, F., Zhang, R., Wang, J., and Wu, C., Gongneng Cailiao 27, 459461 (1996); Chem. Abstr. 126, 254305d (1997).Google Scholar
12. Ogino, T., Suzuki, T., and Sawada, K., J. Crystal Growth 100, 159167 (1990). Vaterite has also been accessed through precipitation from aqueous hydroxyethyl cellulose: L. Pach, Z. Hrabe, S. Komameni, and R. Roy, J. Mater. Res. 5, 2928–2932 (1990).Google Scholar
13. Li, Y., Gokel, G., Hernandez, J., Echegoyen, L., J. Am. Chem. Soc. 116, 30873096 (1994).Google Scholar
14. This morphology points to the critical need for appropriate analysis of crystal phase, as spherical CaCO3 is not infrequently inferred to indicate formation of vaterite. In order to provide definitive proof of calcium carbonate phase for each unique morphology obtained, x-ray powder diffraction and scanning electron microscopic analyses were coupled with transmission electron microscopy/selected area diffraction analysis.Google Scholar
15. The location of vaterite in the CaCO3 phase diagram does not appear to be firmly established: Albright, J. N., Amer. Miner. 56, 620624 (1971). Indeed, many discussions omit this phase entirely: I. Liu and T. P. Mernagh, Amer. Miner. 75, 801–806 (1990); M. Alam, T. Debroy, R. Roy, J. Am. Ceram. Soc. 73, 733–735 (1990); W. D. Carlson, Amer. Miner. 65, 1252–1262 (1980); E. Salje and K. Viswanathan, Contrib. Mineral. Petrol. 55, 55–67 (1976); J. R. Goldsmith and R. C. Newton, Am. J. Sci. 167A, 160–190 (1969); W. A. Crawford and W. S. Fyfe, Science 144, 1569–1570 (1964); P. Bell and J. L. England, Carnegie Inst. Washington Yearb. 63, 177–179 (1963/1964); G. Simmons and P. Bell, Science 139, 1197–1198 (1963); S. P. Clark, Jr., Amer. Miner. 42, 564565 (1957); J. C. Jamieson, J. Geol. 65, 334–343 (1957); G. F. MacDonald, J. Amer. Miner. 41, 744–751 (1956); J. C. Jamieson, J. Chem. Phys. 21, 1385–1390 (1953).Google Scholar
16. The reverse phase transition, namely that of vaterite to calcite, has been reported to be effected thermally (460 °C): Maciejewski, M., Oswald, H. R., and Reller, A., Thermochim. Acta 234, 315328 (1994).Google Scholar
17. For aqueous preparations of calcium carbonate which appear to favor vaterite formation due to potentially related surface-additive interactions, see: Dupont, L., Portemer, F., and Figlarz, M., J. Mater. Chem. 7, 797800 (1997), and references therein.Google Scholar