No CrossRef data available.
Published online by Cambridge University Press: 26 February 2011
The precipitation kinetics of an ordered intermetallic from a disordered matrix, which involves simultaneous ordering and decomposition, is studied by a computer simulation technique based on the microscopic diffusion theory. It is found that the precipitation starts from a congruent ordering transition, which may be continuous or nucleation and growth. This congruent ordering transition transforms the initially disordered state into a single phase nonstoichiometric ordered state with antiphase domains. The next stage is the decomposition which starts from the antiphase domain boundaries and then propagates into the ordered domains. And the final process is the coarsening of the order/disorder two-phase mixture. The predicted kinetics of precipitation is in excellent agreement with recent experimental observations in important alloy systems.