Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-07T21:16:38.432Z Has data issue: false hasContentIssue false

Phase Transformation as a Function of Particle Size in Nanocrystalline Zirconia

Published online by Cambridge University Press:  10 February 2011

Tomas Chraska
Affiliation:
Department of Materials Science & Engineering, State University of New York at Stony Brook, Stony Brook, NY 11794-2275
Alexander H. King
Affiliation:
Department of Materials Science & Engineering, State University of New York at Stony Brook, Stony Brook, NY 11794-2275
Christopher C. Berndt
Affiliation:
Department of Materials Science & Engineering, State University of New York at Stony Brook, Stony Brook, NY 11794-2275
J. Karthikeyan
Affiliation:
Now at Heany Industries, Inc., 249 Briarwood lane, Scottsville NY 14546
Get access

Abstract

Bulk zirconia undergoes a pressure-induced transformation from a (low pressure) monoclinic phase to a high pressure tetragonal phase, at around 3GPa (above 900K). We have studied the structures of zirconia nanoparticles formed by plasma-spraying an organo-metallic precursor. Inspection of the particles in the TEM reveals that they adopt one of two distinct crystal structures, depending upon their size. The smallest particles have the tetragonal structure, while larger ones are monoclinic. Interpolation of the data reveals a critical size above which the monoclinic structure is stable. Upon annealing, the zirconia particles coarsen and the small tetragonal particles transform to the monoclinic structure at about the critical size. Coarsening under these conditions produces irregular particle size distributions. We estimate that the surface-stress induced internal pressure in the tetragonal nanoparticles can be as high as 5 GPa and the corresponding surface stress is about 6N/m.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Subbarao, E. C., in Advances in Ceramics - Sci. &Tech. of Zirconia, Vol.3, edited by Heuer, A.H., Hobbs, L.W., Am. Ceramic Soc., p.124, (1981)Google Scholar
2. Leger, J.M., Tomaszewski, P.E., Atouf, A., Pereira, A.S., Physical Review B, 47, 75, (1993)Google Scholar
3. Howard, C.J., Kisi, E., Ohtaka, O., J. Am. Ceram. Soc., 74, 2321, (1991)Google Scholar
4. Hahn, H. and Averback, R.S., J. Am. Ceram. Soc., 74, 2918, (1991)Google Scholar
5. Srinivasan, R., Rice, L., Davis, B.H., J. Am. Ceram. Soc., 74, 3528, (1990)Google Scholar
6. Murase, J., Kato, E., J. Am. Ceram. Soc., 66, 196, (1982)Google Scholar
7. Garvie, R.C., J. Phys. Chem., 69, 1238, (1965)Google Scholar
8. Garvie, R.C., Goss, M.F., J. Mater. Sci., 21, 1253, (1986)Google Scholar
9. Winterer, R., Nitsche, R., Redfern, S.A.T., Schmahl, W.W., Hahn, H., Nanostructured Mater., 6, 679, (1995)Google Scholar
10. Skandan, G., Nanostructured Mater., 5, 111, (1995)Google Scholar
11. Srinivasan, R., Davis, B.H., Rice, L.A., de Angelis, R.J., J. of Mater. Sci., 27, 661, (1992)Google Scholar
12. Karthikeyan, J., Berndt, C.C., Tikkanen, J., Wang, J.Y., King, A.H. and Herman, H., Nanostructured Mater., 8, p.61, (1997)Google Scholar
13. Klug, H.P., Alexander, L.E., X-ray diffraction procedures for polycrystalline and amorphous materials, Wiley, New York, (1974)Google Scholar
14. Cohen, R.E., Mehl, M.J., Boyer, L.L., Physica B, 150, 1, (1988)Google Scholar
15. Skandan, G., Hahn, H., Roddy, M., Cannon, W.R., J. Am. Ceram. Soc., 77, 1706, (1994)Google Scholar
16. Block, S., Jornada, J.A.H. Da, Piermarini, G.J., J. Am. Ceram. Soc., 68, 497, (1985)Google Scholar
17. Ohtaka, O., Yamanaka, T., Kume, S., Ito, E., Navrotsky, A., J. Am. Ceram. Soc., 74, 505, (1991)Google Scholar
18. Nitsche, R., Winterer, M., Hahn, H., NanoStructured Mater., 6, 679, (1995)Google Scholar
19. Nitsche, R., Rodewald, M., Skandan, G., Fuess, H., Hahn, H., NanoStructured Mater., 7, 535, (1996)Google Scholar