Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T15:44:49.414Z Has data issue: false hasContentIssue false

Phase Stability in Rapidly Solidified Iron and Nickelrease Alloys

Published online by Cambridge University Press:  15 February 2011

John Wood*
Affiliation:
The Open University, Faculty of Technology, Materials Science, Walton Hall, Milton Keynes, MK7 6AA, England
Get access

Abstract

The structure of a large ranqe of model steels and high speed steels after rapid solidification are described in terms of the effect of processing conditions and alloy content. General lessons are deduced for these structures regarding the stability of austenite, ferrite, ′ and ɛ martensite, and excess carbon concentrations in rapidly solidified steels and these are compared with other workers' results. Some preliminary data regarding the structure of model nickel alloys are presented in order to shed light on previously described structures of nickel superalloys.

Type
Research Article
Copyright
Copyright © Materials Research Society 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Jones, H. and Suryanarayana, C., J. Meta. Sci. 8 (1973) 705.Google Scholar
2 Mehrebian, R., Kear, B., and Cohen, M., ‘Rapid Solidification Processing’ vol. 1 (Claitor's Publishing, Baton Rouge, 1978).Google Scholar
3 Mehrebian, R., Kear, B., and Cohen, M., ‘Rapid Solidification Processing’ vol. 1 (Claitor's Publishing, Baton Rouge, vol. II (1980).Google Scholar
4 Wood, J. V., Mills, P. F., Bee, J. V. and Bingham, J. K., Metall. Trans. 10A (1979) 575.Google Scholar
5 Wood, J. V., Mills, P. F., Waugh, A. R. and Bee, J. V., J. Mater. Sci., 15 (1980) 2709.CrossRefGoogle Scholar
6 Kadalbal, R., Montoya-Cruz, J. and Kattamis, T. Z., as of 3, p.195.Google Scholar
7 Wood, J. V. and Honeycombe, R. W. K. in ‘Ultra rapid quenching from the meltHerman, H., ed. (Academic Presss 1981) p. 117.Google Scholar
8 Williams, D. L., Powder Metallurgy, 2 (1977), 84.Google Scholar
9 Pond, R., Maringer, R. E., and Mobley, C. E., in ‘New Trends in Materials Processing’ (ASM, Metals Park 1974) p. 28.Google Scholar
10 Wood, J. V., Bingham, J. K. and Bee, J. V. in Proc. 3rd Int. Conf. on Rapidly Quenched Metals (Metals Society, Longodn 1978) p. 94.Google Scholar
11 Ruhl, R. C. and Cohen, M., Acta Metall., 15 (1967) 159.Google Scholar
12 Sare, I. R., Metal Science, 5 (1980), 177.CrossRefGoogle Scholar
13 Schmidt, I. and Hornbogen, E., Z. Metall. 69 (1978) 221.Google Scholar
14 Dubois, J. M. and Le Caer, G., Acta Metall. 25 (1977) 109.Google Scholar
15 Inoue, A., Iwadachi, T., Minemura, T. and Masumoto, T., J. Japan Inst. Metals, 44 (1980) 245.Google Scholar
16 Inoue, A., Minemura, T., Kitamura, A., and Masumoto, T., Met. Trans. 12A (1981) 1041.Google Scholar
17 Sare, I. R. and Honeycombe, R. W. K., Metal Science, 13 (1979) 269.Google Scholar
18 Minemura, T., Inoue, A., Kojuma, Y., and Masumoto, T., Met. Trans. 11A (1980) 671.Google Scholar
19 Bee, J. V. and Wood, J. V., Metal Science, 16 (1982) 268.CrossRefGoogle Scholar
20 Sare, I. R. and Honeycombe, R. W. K., J. Mater. Sci. 13 (1978) 1991.Google Scholar
21 Rayment, J. J. and Cantor, B., Met. Trans. 12A (1981) 1557.Google Scholar
22 Pickering, F. B., Int. Met. Rev. 21 (1976) 227.Google Scholar
23 Inokuti, Y. and Cantor, B., Meta. Metall., 30 (1982) 343.Google Scholar
24 Duflos, F. and Cantor, B., Acta. Metall, 30 (1982) 323.Google Scholar
25 Kubo, M., Wayman, C. M., Met. Trans. 10A (1978) 633.Google Scholar
26 Betteridge, W. and Heslop, J. eds. ‘The Nimonic Alloys’ (Arnold's, London '74)Google Scholar