Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-26T04:06:28.224Z Has data issue: false hasContentIssue false

Phase Separated Morphology of P3HT:PCBM Bulk Heterojunction from Coarse-Grained Molecular Dynamics and Monte Carlo Simulation

Published online by Cambridge University Press:  22 January 2014

Tran Thinh To
Affiliation:
Solar Energy Research Institute of Singapore (SERIS), 7 Engineering Drive 1, #E3A-06, Singapore 117574
Jing Han Yap
Affiliation:
Department of Materials Science and Engineering, National University of Singapore, 5 Engineering Drive 2, #E2-05-22, Singapore 117579
Rayavarapu Prasada Rao
Affiliation:
Department of Materials Science and Engineering, National University of Singapore, 5 Engineering Drive 2, #E2-05-22, Singapore 117579
Stefan Adams
Affiliation:
Solar Energy Research Institute of Singapore (SERIS), 7 Engineering Drive 1, #E3A-06, Singapore 117574 Department of Materials Science and Engineering, National University of Singapore, 5 Engineering Drive 2, #E2-05-22, Singapore 117579
Get access

Abstract

Morphology of the active layer in bulk heterojunction P3HT:PCBM organic solar cell was studied using Monte Carlo (MC) and coarse-grained dynamics simulations. While coarse-grained molecular dynamics allow us to quickly estimate the P3HT:PCBM interfacial energy of bilayer structure as a function of underlying layer thickness, bridging the dimension and time gap between dynamics simulations and experiment is computationally expensive and therefore not viable. Using MC technique with input from dynamics simulations allowed us to speed up the calculation and obtain final morphological information based on energetics and entropy, and at the same time retained the physics fidelity in-built in our validated coarse-grained model. The final structure gives phase separated domains with dimension of approximately 12 nm, on par with reported experimental result. The method can be applied to other organic photovoltaics systems to predict active layer morphology relevant for device performance or 3-dimensional device modelling at continuum level.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Chamberlain, G. A., Solar Cells, 8, 4783,(1983).CrossRefGoogle Scholar
Ameri, T., Khoram, P., Min, J. and Brabec, C. J., Adv. Mater., 25, 42454266,(2013).CrossRefGoogle Scholar
Yu, G., Gao, J., Hummelen, J. C., Wudl, F. and Heeger, A. J., Science, 270, 17891791,(1995).CrossRefGoogle Scholar
Padinger, F., Rittberger, R. S. and Sariciftci, N. S., Adv. Funct. Mater., 13, 8588,(2003).CrossRefGoogle Scholar
Kaake, L. G., Moses, D. and Heeger, A. J., J. Phys. Chem. Lett., 22642268,(2013).CrossRefGoogle Scholar
Brabec, C. J., Gowrisanker, S., Halls, J. J. M., Laird, D., Jia, S. and Williams, S. P., Adv. Mater., 22, 38393856,(2010).CrossRefGoogle Scholar
Lee, C.-K., Pao, C.-W. and Chu, C.-W., Energ. Environ. Sci., 4, 41244132,(2011).CrossRefGoogle Scholar
Carrillo, J.-M. Y., Kumar, R., Goswami, M., Sumpter, B. G. and Brown, W. M., Phys. Chem. Chem. Phys., 15, 1787317882,(2013).CrossRefGoogle Scholar
To, T. T. and Adams, S., Submitted to Phys. Chem. Chem. Phys. (2013).Google Scholar
Karasawa, N. and Goddard, W. A., J. Phys. Chem., 93, 73207327,(1989).CrossRefGoogle Scholar
Bavel, S. S. v., Sourty, E., With, G. d. and Loos, J., Nano Lett., 9, 507513,(2008).CrossRefGoogle Scholar
Kohn, P., Rong, Z., Scherer, K. H., Sepe, A., Sommer, M., Müller-Buschbaum, P., Friend, R. H., Steiner, U. and Hüttner, S., Macromolecules, 46, 40024013,(2013).CrossRefGoogle Scholar
Kayunkid, N., Uttiya, S. and Brinkmann, M., Macromolecules, 43, 49614967,(2010).CrossRefGoogle Scholar