Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T02:51:15.606Z Has data issue: false hasContentIssue false

Phase Selection During Pulsed Laser Annealing of Fe-V Alloys

Published online by Cambridge University Press:  28 February 2011

J. H. Perepezko
Affiliation:
University of Wisconsin, 1509 University Avenue, Madison, WI 53706
D. M. Follstaedt
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185-5800
P. S. Peercy
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185-5800
Get access

Abstract

Pulsed laser melting of the low-temperature σ (tetragonal, D8b) phase has been used to generate a liquid undercooled with respect to the melting point of the higher-temperature, equilibrium α (bcc) solid solution in equiatomic Fe-V alloys. From calculations based on reported thermodynamic data and equilibrium transformation temperatures, the metastable melting point of the σ phase is about 1720 K for an Fe-50 at.% V alloy, which is 54 K below the melting temperature of the α phase. During rapid heating of well-annealed σ-phase material with a 30 ns laser pulse to above melt threshold, the σ → α reaction is suppressed, so that the melt zone is undercooled by ∼ 54 K with respect to the equilibrium α phase. The α phase nucleates from the undercooled molten surface layer and is retained during the subsequent rapid cooling (∼ 1010 K/s) because of the relatively sluggish α → σ transformation. X-ray diffraction (Read camera) and TEM identified the α phase in the near-surface after melting σ with incident laser energies (1.0–1.41 J/cm2) which are well above the melt threshold as determined by changes in reflectivity (∼ 0.7 J/cm2). The α phase nucleated from the undercooled liquid within ∼ 20 ns.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Follsteadt, D. M., Peercy, P. S. and Perepezko, J. H., Appl. Phys. Lett. 48, 338 (1986).Google Scholar
2. Perepezko, J. H., Follstaedt, D. M. and Peercy, P. S., Mat. Res. Soc. Symp. Proc. 51, 297 (1986).Google Scholar
3. Ferepezko, J. H. and Boettinger, W. J., Mat. Res. Soc. Symp. Proc. 19, 223 (1983).CrossRefGoogle Scholar
4. Kubaschewski, O., Iron-Binary Phase Diagrams, (Springer-Verlag, New York, 1982).Google Scholar
5. Nevitt, M. V., in Electronic Structure and Alloy Chemistry of the Transition Elements, Beck, P. A., ed. (Interscience, New York, 1963) pp. 105123.Google Scholar
6. Hall, E. O. and Algie, S. G., Int. Met. Rev. 11, 61 (1966).CrossRefGoogle Scholar
7. Kitchingman, W. J. and Bedford, G. M., Metal Sci. Jnl. 5, 121 (1971).Google Scholar
8. Seki, J. I., Hagiwara, M. and Suzuki, T., Jnl. Mat. Sci. 14, 2404 (1979).Google Scholar
9. Hack, K., Nussler, H. D., Spencer, P. J. and Indien, G., CALPHAD VIII, Stockholm, May 1979, p. 224.Google Scholar
10. Kubaschewski, O., Probst, H. and Geiger, K. H., Z. Phys. Chem. 104, 23 (1979).Google Scholar
11. Smith, J. F., Bull. Alloy Phase Diagrams, 5, 184 (1984).Google Scholar
12. Baker, J. C. and Cahn, J. W., in Solidification (ASM, Metals Park, Ohio 1971) pp. 2358.Google Scholar
13. Cullis, A. G., Webber, N. C. and Bailey, P., J. Phys. E12 688 (1979).Google Scholar
14. Bungardt, K. and Spyra, W., Arch. Eisenhuttenwes. 30, 95 (1959).Google Scholar
15. Fehling, J. and Scheil, E., Metallkde, Z.. 53 593 (1962).Google Scholar
16. Peercy, P. S., Follstaedt, D. M. and Terepezko, J. H., to be published.Google Scholar