Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T03:48:14.287Z Has data issue: false hasContentIssue false

Persistent Photoconductivity in Bulk Strontium Titanate

Published online by Cambridge University Press:  19 August 2014

Matthew D. McCluskey
Affiliation:
Washington State University, Pullman, WA 99164-2814, U.S.A.
Caleb D. Corolewski
Affiliation:
Washington State University, Pullman, WA 99164-2814, U.S.A.
Violet M. Poole
Affiliation:
Washington State University, Pullman, WA 99164-2814, U.S.A.
Marianne C. Tarun
Affiliation:
Washington State University, Pullman, WA 99164-2814, U.S.A.
Get access

Abstract

Strontium titanate (SrTiO3) has novel properties, including a large temperature-dependent dielectric constant, and can be doped to make it metallic or even superconducting. The origin of conductivity observed at the SrTiO3/LaAlO3 interface is a topic of intense debate. In the present work, bulk single crystal SrTiO3 samples were heated at 1200°C, with the goal of producing cation vacancies. These thermally treated samples exhibited persistent photoconductivity (PPC) at room temperature. Upon exposure to sub-band-gap light (>2.9 eV), the free-electron density increases by over two orders of magnitude. This enhanced conductivity persists in the dark, at room temperature, for several days with essentially no decay. Light excites an electron from the vacancy to the conduction band, where it remains, due to a large recapture barrier. These observations highlight the importance of defects in determining the electrical properties of oxides and may point toward novel applications.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ramesh, R. and Schlom, D.G., MRS Bulletin 33 (No. 11), 1006 (2008).CrossRefGoogle Scholar
Dawber, M., Rabe, K. M. and Scott, J. F., Reviews of Modern Physics 77, 1083 (2005).CrossRefGoogle Scholar
Bednorz, J.G. and Müller, K.A., Z. Phys. B: Condens. Matter 64, 189 (1986).CrossRefGoogle Scholar
Ramirez, A.P., J. Phys.: Condens. Matter 9, 8171 (1997).Google Scholar
Ohtomo, A. and Hwang, H.Y., Nature 427, 423 (2004).CrossRefGoogle Scholar
Chambers, S.A., Engelhard, M.H., Shutthanandan, V., Zhu, Z., Droubay, T.C., Qiao, L., Sushko, P.V., Feng, T., Lee, H.D., Gustafsson, T., Garfunkel, E., Shah, A.B., Zuo, J.-M., and Ramasse, Q.M., Surf. Sci. Rep. 65, 317 (2010).CrossRefGoogle Scholar
Houde, D., Lépine, Y., Pépin, C., Jandl, S. and Brebner, JL, Phys. Rev. B 35, 4948 (1987).CrossRefGoogle Scholar
Tarun, M.C. and McCluskey, M.D., J. Appl. Phys. 109, 063706 (2011).CrossRefGoogle Scholar
Villamagua, L., Barreto, R., Prócel, L.M., and Stashans, A., Phys. Scr. 75, 374 (2007).CrossRefGoogle Scholar
Bork, N., Bonanos, N., Rossmeisl, J., and Vegge, T., Phys. Chem. Chem. Phys. 13, 15256 (2011).CrossRefGoogle Scholar
Tarun, M.C. and McCluskey, M.D., J. Appl. Phys. 109, 063706 (2011).CrossRefGoogle Scholar
Thienprasert, J.T., Fongkaew, I., Singh, D.J., Du, M.-H., and Limpijumnong, S., Phys. Rev. B 85, 125205 (2012).CrossRefGoogle Scholar
Varley, J., Janotti, A., and Van de Walle, C.G., Phys. Rev. B 89, 075202 (2014).CrossRefGoogle Scholar
Hirsch, M.T., Wolk, J.A., Walukiewicz, W., and Haller, E. E., Appl. Phys. Lett. 71, 1098 (1997).CrossRefGoogle Scholar
Li, J.Z., Lin, J.Y., Jiang, H.X., Geisz, J.F., and Kurtz, S.R., Appl. Phys. Lett. 75, 1899 (1999).CrossRefGoogle Scholar
Gilabert, A., Hoffmann, A., Medici, M.G., and Schuller, I.K., Journal of Superconductivity and Novel Magnetism 13, 1 (2000).CrossRefGoogle Scholar
Lang, D.V. and Logan, R.A., Phys. Rev. Lett. 39, 635 (1977).CrossRefGoogle Scholar
Mooney, P.M., J. Appl. Phys. 67, R1 (1990).CrossRefGoogle Scholar
Tarun, M.C., Selim, F.A., and McCluskey, M.D., Phys. Rev. Lett. 111, 187403 (2013).CrossRefGoogle Scholar
Faughnan, B.W., Phys. Rev. B 4, 3623 (1970).CrossRefGoogle Scholar
Jalan, B., Engel-Herbert, R., Mates, T.E., and Stemmer, S., Appl. Phys. Lett. 93, 052907 (2008).CrossRefGoogle Scholar
Wild, R.J., Rockar, E.M., and Smith, J.C., Phys. Rev. B 8, 3828 (1973).CrossRefGoogle Scholar