Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T07:58:52.714Z Has data issue: false hasContentIssue false

Perovskite Ti3AlC Carbide Splitting in High Nb Containing TiAl Alloys

Published online by Cambridge University Press:  19 December 2014

Li Wang
Affiliation:
Helmholtz-Zentrum Geesthacht, Institute of Materials Research, Max-Planck-Strasse 1, Geesthacht, D-21502, Germany
Heike Gabrisch
Affiliation:
Helmholtz-Zentrum Geesthacht, Institute of Materials Research, Max-Planck-Strasse 1, Geesthacht, D-21502, Germany
Uwe Lorenz
Affiliation:
Helmholtz-Zentrum Geesthacht, Institute of Materials Research, Max-Planck-Strasse 1, Geesthacht, D-21502, Germany
Frank-Peter Schimansky
Affiliation:
Helmholtz-Zentrum Geesthacht, Institute of Materials Research, Max-Planck-Strasse 1, Geesthacht, D-21502, Germany
Andreas Stark
Affiliation:
Helmholtz-Zentrum Geesthacht, Institute of Materials Research, Max-Planck-Strasse 1, Geesthacht, D-21502, Germany
Florian Pyczak
Affiliation:
Helmholtz-Zentrum Geesthacht, Institute of Materials Research, Max-Planck-Strasse 1, Geesthacht, D-21502, Germany
Get access

Abstract

Transmission electron microscopy has been used to investigate the morphological development of the perovskite (P-) Ti3AlC carbides in the γ matrix of a Ti-45Al-5Nb-0.75C alloy during annealing. P-Ti3AlC carbides in the γ matrix initially have a needle-like shape but during annealing at 800 °C they change to a plate-like shape. In the needle-like shape the carbides are orientated parallel to the [001] direction of the matrix. They extend along the [100]γ or [010]γ direction into plates later and subsequently split into sub particles after extended annealing. It is proposed that the elastic interaction energy between the split sub domains may be the reason that this decomposition into sub-particles is energetically favorable.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Nemoto, M., Tian, W.H., Harada, K., Han, C.S. and Sano, T., Mater Sci Eng, A 152, 247 (1992).CrossRefGoogle Scholar
Christoph, U., Appel, F. and Wagner, R., Mater Sci Eng, A 239240, 39 (1997).CrossRefGoogle Scholar
Chen, S., Beaven, P.A. and Wagner, R., Scr Metall Mater 26, 1205 (1992).CrossRefGoogle Scholar
Tian, W.H., Sano, T. and Nemoto, M., Philos Mag A 68, 965 (1993).CrossRefGoogle Scholar
Zhang, W.J., Deevi, S.C. and Chen, G.L., Intermetallics 10, 403 (2002).CrossRefGoogle Scholar
Appel, F., Oehring, M. and Wagner, R., Intermetallics 8, 1283 (2000).CrossRefGoogle Scholar
Lin, J.P., Zhao, L.L., Li, G.Y., Zhang, L.Q., Song, X.P., Ye, F. and Chen, G.L., Intermetallics 19, 131 (2011).CrossRefGoogle Scholar
Lee, J.K., Barnett, D.M. and Aaronson, H.I., Metall. Trans. A 8, 963 (1977).CrossRefGoogle Scholar
Wang, L., Pyczak, F., Gabrisch, H., Lorenz, U., Münch, M., Schimansky, F.P., Schreyer, A. and Stark, A., MRS Online Proceedings (2015), submitted.Google Scholar
Miyazaki, T., Imamura, H., Mori, H. and Kozakal, T., Journal of Materials Science 16, 1197 (1981).CrossRefGoogle Scholar
Miyazaki, T., Imamura, H. and Kozakai, T., Mater Sci Eng 54, 9 (1982).CrossRefGoogle Scholar
Doi, M., Miyazaki, T. and Wakatsuki, T., Mater Sci Eng 67, 247 (1984).CrossRefGoogle Scholar
He, Y., Schwarz, R.B., Darling, T., Hundley, M., Whang, S.H. and Wang, Z.M., Mater Sci Eng, A 239240, 157 (1997).CrossRefGoogle Scholar