Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T02:45:19.082Z Has data issue: false hasContentIssue false

Periodic Mesoporous Silica Gels

Published online by Cambridge University Press:  10 February 2011

M. T. Anderson
Affiliation:
Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185
J. E. Martin
Affiliation:
Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185
J. G. Odinek
Affiliation:
Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185
P. Newcomer
Affiliation:
Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185
J. P. Wilcoxon
Affiliation:
Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185
Get access

Abstract

We have synthesized monolithic particulate gels of periodic mesoporous silica by adding tetramethoxysilane to a homogeneous alkaline micellar precursor solution. The gels exhibit 5 characteristic length scales over 4 orders of magnitude: fractal domains larger than the particle size (>500 nm), particles that are ˜150 to 500 nm in diameter, interparticle pores that are on the order of the particle size, a feature in the gas adsorption measurements that indicates pores ˜10–50 nm, and periodic hexagonal arrays of ˜3 nm channels within each particle. The wet gel monoliths exhibit calculated densities as low as ˜0.02 g/cc; the dried and calcined gels have bulk densities that range from ˜0.3–0.5 g/cc. The materials possess large interparticle (˜1.0–2.3 cc/g) and intraparticle (˜0.6 cc/g) porosities.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Beck, J. S., Vartuli, J. C., Roth, W. J., Leonowicz, M. E., Kresge, C. T., Schmitt, K. D., Chu, C. T-W., Olson, K. H., Sheppard, E. W., McCullen, S. B., Higgins, J. B., and Schlenker, J. L., J. Am. Chem. Soc. 114, pp. 1083410843 (1992).Google Scholar
2. Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C., and Beck, J. S., Nature 359, pp. 710712 (1992).Google Scholar
3. Huo, Q., Margolese, D. I., Ciesla, U., Feng, P., Gier, T. E., Sieger, P., Leon, R., Petroff, P. M., Schuth, F., and Stucky, G. D., Nature 24, pp. 317321 (1994).Google Scholar
4. Huo, Q., Margolese, D. I., Ciesla, U., Demuth, D. G., Feng, P., Gier, T. E., Sieger, P., Firouzi, A., Chmelka, B. F., Schuth, F., and Stucky, G. D., Chem. Mater. 6, pp. 11761191 (1994).Google Scholar
5. Chen, C.-Y., Li, H-X., and Davis, M. E. Micropor. Mater. 2, pp. 1726(1993).Google Scholar
6. see for example, Martin, J. E., Wilcoxon, J. P., Schaefer, D., and Odinek, J., Phys. Rev. A, 41(8), pp. 43794391 (1990).Google Scholar
7. Lin, W., Chen, J., Sun, Y., and Pang, W., J. Chem. Soc., Chem. Commun. p. 2367 (1995).Google Scholar