Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-12T04:11:15.989Z Has data issue: false hasContentIssue false

Performance and Reliability of Scaled Gate Dielectrics

Published online by Cambridge University Press:  10 February 2011

W. M. Paulson
Affiliation:
Advanced Products Research and Development Laboratory
P. J. Tobin
Affiliation:
Advanced Products Research and Development Laboratory
H-H. Tseng
Affiliation:
Advanced Products Research and Development Laboratory
B. Maiti
Affiliation:
Advanced Products Research and Development Laboratory
C. Gelatos
Affiliation:
Advanced Products Research and Development Laboratory
R. I. Hegde
Affiliation:
Advanced Products Research and Development Laboratory
S. G. H. Anderson
Affiliation:
Advanced Products Research and Development Laboratory
Get access

Abstract

Gate dielectrics for advanced ULSI circuits are rapidly scaling below 10 nm. Thinner dielectrics and smaller lateral dimensions are essential to produce high performance transistors for memories, microprocessors and microcontrollers. In this overview we will discuss the factors that affect the performance and reliability of scaled gate dielectrics. Process parameters that affect oxide and oxynitride dielectrics include substrates, pre-gate cleaning, growth parameters and growth techniques as well as oxide and oxynitride dielectric materials. Thin dielectrics require new or modified measurement methods and extensive use of physical analysis techniques such as SIMS, XPS, AFM and TEM to characterize these materials. Boron diffusion through thin gate oxides, HCI stress, and process induced damage can degrade dielectric quality and affect long term reliability. These factors will affect the performance and reliability of circuits with scaled gate dielectrics.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hu, C., IEDM Tech. Dig., p319 (1996).Google Scholar
2. Momose, H. S., et al., IEEE Trans., Elect. Dev. 43, 1233 (1996).Google Scholar
3. Matsushita, Y., Samata, S., Miyashita, M. and Kubota, H., IEDM Tech. Dig. 321 (1994).Google Scholar
4. Auberton-Herve, A.J., IEDM Tech. Dig., 3, 1996.Google Scholar
5. Ohmi, T., et al., IEEE Trans., Elect. Dev. 39, 537 (1992).Google Scholar
6. Ohmi, T., Isagawa, T., Kogure, M. and Imaoka, T., J. Electrochem. Soc. 140, 804 (1993).Google Scholar
7. Meuris, M., et al. Microcontamination, May 1992, p31.Google Scholar
8. Teerlinck, I., et al., Proc 1996 Symp. on VLSI Tech. p206.Google Scholar
9. Werkhoven, C., Granneman, E., Hendriks, M., de Blank, R., IEDM Tech. Dig., 633, (1992).Google Scholar
10. Wolke, K., Solid State Technology 8, 86 (1996).Google Scholar
11. Aspnes, D. E. and Theeten, J. B., J. Electrochem. Soc. 127, 1359(1980).Google Scholar
12. Yakovlev, V. A. and Irene, E. A., J. Electrochem. Soc. 139, 1450(1992).Google Scholar
13. Awaji, N., et al, Japn. J. Appl. Phys. 35, 667 (1996).Google Scholar
14. Green, M. L. et al. Appl. Phys. Letters 65, 848 (1994).Google Scholar
15. Woollam, J. A. & Snyder, P. G., “Variable Angel Spectroscopie Ellipsometry” in Encyclopedia of Materials and Charracterization, Butterworth Publishers, Greenwich (1992).Google Scholar
16. Irene, E. A., Thin Solid Films 233, 96 (1993).Google Scholar
17. Kao, S-C. and Doremus, R. H., J. Eelectrochem Soc. 141, 1832 (1994).Google Scholar
18. Krisch, K.S., Bude, J. D., and Manchanda, L., EDL 17, 521 (1996).Google Scholar
19. Peters, M.A., in Semiconductor Fab. Tech. p255 (1996).Google Scholar
20. Edelman, P., et al., in Mat. Res. Soc. Symp. Proc. 428, p443 (1996).Google Scholar
21. Zafar, S. et. al. Appl. Phys Lett. 67, 1031 (1995).Google Scholar
22. Lee, S.-H., Cho, B.-J., Kim, J.-C., and Choi, S.-H., IEDM Tech. Dig., 605 (1994).Google Scholar
23. Depas, M., Nigam, T., and Heyns, M.M., IEEE Tran. Electron. Dev. 43, 1499 (1996).Google Scholar
24. Han, L.K., Bhat, M., Wristers, D., Fulford, J. and Kwong, D.L., IEDM Tech. Dig., 617 (1994).Google Scholar
25. Apte, P. K. and Saraswat, K. C., IEEE Elect. Dev. Lett. 14, 512 (1993).Google Scholar
26. Gong, S. S., et al.,, IEEE Tran. Electron. Dev. 40, 1251 (1993).Google Scholar
27. Satake, H., Yasuda, N., Takagi, S-i. and Toriumi, A., Appl. Phys Lett. June 1996.Google Scholar
28. Hasegawa, E. et al. IEDM Tech. Dig., 327, (1995).Google Scholar
29. Ohmi, K., Nakamura, K., Futatsuki, T., & Ohmi, T., Proc. 1994 Symp. on VLSI Tech. p 109.Google Scholar
30. Reid, K. G. and Sitaram, A. R., in Mat. Res. Soc. Symp. Proc. 387, 201 (1995).Google Scholar
31. Singer, P., Semiconductor International, March 1997, p84.Google Scholar
32. Egawa, Y. et al. IEDM Tech. Dig., 927 (1993).Google Scholar
33. Tobin, P. J. et al. J. Appl. Phys. 75, 1811 (1994).Google Scholar
34. Hartig, M.J. and Tobin, P.J., J. Electrochem. Soc. Vol. 143, 1753 (1996).Google Scholar
35. Ellis, K.A., Carr, E.C. and Buhrman, R.A., Mat. Res. Soc. Symp. Proc. 428, 393 (1996).Google Scholar
36. Green, M. L., et al. Appl. Phys. Lett. 67, 1600 (1995).Google Scholar
37. Hegde, R. I., Maiti, B. and Tobin, P. J., J. Electrochem. Soc. 144, 1081 (1997).Google Scholar
38. Okada, Y. et al., IEEE Trans Elec. Dev. 41, 1608 (1994).Google Scholar
39. Luo, M. S. C., et al., IEDM Tech. Dig., 691 (1995).Google Scholar
40. Manchanda, L. et.al. IEDM Tech. Dig., p459 (1993).Google Scholar
41. Misra, V., Xu, X-L. and Wortman, J. J., in Mat. Res. Soc. Symp. Proc. 387, p201 (1995).Google Scholar
42. Vogel, E. M. et al., IEEE Trans Elee. Dev. 43, 753 (1996).Google Scholar
43. Baker, F. K. et al. IEDM Tech. Dig., 443 (1989).Google Scholar
44. Sung, J. M. et al. IEDM Tech. Dig., 447 (1989).Google Scholar
45. Uwasaw, K. et al, IEDM Tech. Dig., 895 (1993).Google Scholar
46. Krisch, K. S., et al. IEEE Trans. Elect. Dev. 43, 982 (1996).Google Scholar
47. Tseng, H-H., et al. IEEE Trans. Elect. Dev. 39, 1678 (1992).Google Scholar
48. Fair, R. B., IEDM Tech. Dig., 85 (1995).Google Scholar
49. Sun, S.C., Wang, L.S., Yeh, F.L. and Chen, C.H., Proc. 1995 Symp. on VLSI Tech., p.121.Google Scholar
50. Okazaki, Y., Nakayama, S., Miyake, M. and Kobayashi, T., IEEE Trans. ED 41, 2369 (1994).Google Scholar
51. Shimizu, S., et. al. IEDM Tech. Dig., 67 (1994).Google Scholar
52. Hattangady, S. V. et. al. IEDM Tech. Dig., 495 (1996).Google Scholar
53. Liu, C. T., et. al. IEDM Tech. Dig., p499 (1996).Google Scholar
54. Wristers, D., et al., Proc. IEEE Reliability Phys. Proc, 77 (1996).Google Scholar
55. Kuda, M., Shida, Y., Kawaguchi, J. and Kaneko, Y., IEDM Tech. Dig., 471 (1993).Google Scholar
56. Brozek, T., Chan, Y. D. and Viswanathan, C. R., IEDM Tech. Dig., 311 (1995).Google Scholar
57. Yamada, T., Erigushi, K., Kosaka, Y. and Hatada, K., IEDM Tech. Dig., 727, (1996).Google Scholar
58. Woerlee, P., IEDM Tech. Dig., 537 (1991).Google Scholar
59. Kusunoki, S. et al. IEDM Tech. Dig., 651 (1991).Google Scholar
60. Shimizu, S., et al., IEDM Tech. Dig., 67 (1994).Google Scholar
61. Materials Reliability in Microelectronics VI, edited by Filter, W. F., Clement, J. J., Oates, A. S., Rosenberg, R. and Ml Lenahan, P., Mater. Res. Soc. Proc. 428, (Pittsburgh, PA, 1996)Google Scholar
62. Hunter, W. R., Proc. IEEE Reliability Phys. Proc, 37 (1996).Google Scholar
63. Depas, M. et al., Proc. Symp. on VLSI Tech., 23 (1994).Google Scholar
64. Nakata, M. and Shinriki, H., Ext. Abs. 21st Conf. Solid State Devices.& Materials p.545 (1989).Google Scholar
65. Campbell, S. A., et al., IEEE Trans. ED 44, 104 (1997).Google Scholar