Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-24T17:42:54.705Z Has data issue: false hasContentIssue false

Peculiar Features of the Dielectric Response in Lead Scandium Tantalate Pb(Sc1/2Ta1/2)O3 Thin Films

Published online by Cambridge University Press:  26 February 2011

Kyle Brinkman
Affiliation:
[email protected], AIST, Hydrogen Dymanics in Metals, AIST Tsukuba Central 5, Tsukuba 305-8565, Japan, Tsukuba, 305-8565, Japan, +81298615080 ext 55254
Alexander Tagantsev
Affiliation:
[email protected], Ecole Polytechnique Federale de Lausanne (EPFL), Ceramics Laboratory, Lausanne, CH-1015, Switzerland
Vladimir Cherman
Affiliation:
[email protected], Ecole Polytechnique Federale de Lausanne (EPFL), Ceramics Laboratory, Lausanne, CH-1015, Switzerland
Yongli Wang
Affiliation:
[email protected], Ecole Polytechnique Federale de Lausanne (EPFL), Ceramics Laboratory, Lausanne, CH-1015, Switzerland
Nava Setter
Affiliation:
[email protected], Ecole Polytechnique Federale de Lausanne (EPFL), Ceramics Laboratory, Lausanne, CH-1015, Switzerland
Stanislav Kamba
Affiliation:
[email protected], Academy of Sciences of the Czech Republic, Institute of Physics, Na Slovance 2, Prague, 182 21, Czech Republic
Jan Petzelt
Affiliation:
[email protected], Academy of Sciences of the Czech Republic, Institute of Physics, Na Slovance 2, Prague, 182 21, Czech Republic
Get access

Abstract

An examination of the low temperature (20 K) dielectric permittivity revealed dispersion between the MHz and THz frequencies in both disordered and ordered Pb(Sc1/2Ta1/2)O3 (PST) thin films. The difference between the lattice contribution in the THz regime and that measured in the MHz regime at extremely low temperatures points to the peculiar contribution of polar regions which maintain their mobility on cooling. Experiments measuring the permittivity upon cooling under an electric bias field revealed an additional peculiar feature of polar regions in disordered PST thin films: the application of a DC field of 30kV/cm failed to induce a phase transition to a long range polar state.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Cross, E., Ferroelectrics 76, 241 (1987)Google Scholar
2. Westphal, V., Kleemann, W., and Glinchuk, M. D., Phys. Rev. Lett. 68, 847 (1992)Google Scholar
3. Pirc, R., Blinc, R., Phys. Rev. B 60, 13470 (1999)Google Scholar
4. Tyunina, M. and Levoska, J., Phys. Rev. B 63 224102 (2001)Google Scholar
5. Kighelman, Z., Damjanovic, D., and Setter, N., J. Appl. Phys. 89 1393 (2001)Google Scholar
6. Brinkman, K., Tagantsev, A., Sherman, V., Su, D. and Setter, N., Phys. Rev. B, 73 214112 (2006)Google Scholar
7. Kamba, S., Berta, M., Kempa, M., Petzelt, J.., Brinkman, K., Setter, N., J. Appl. Phys. 98 074103 (2005).Google Scholar
8. Kamba, S., Kempa, M.., Bovtun, V., Petzelt, J., Brinkman, K.., Setter, N., J. Phys.: Condens. Matter 17 3965 (2005).Google Scholar
9. Tyunina, M., Levoska, J., Kundzinsh, K., Zauls, V., Phys. Rev. B 69, 224101 (2004).Google Scholar
10. Stenger, C., Burggraaf, A., Phys. stat. sol. (a) 61, 275 (1980).Google Scholar
11. Setter, N., Cross, E., Journal of Applied Physics 51 4356 (1980).Google Scholar
12. Brinkman, K., Ph.D. Thesis, EPFL, Lausanne (2004).Google Scholar
13. Brinkman, K., Wang, Y., Cantoni, M., Su, D.., Setter, N., P. Petrov,, Journal of Materials Research accepted September (2006).Google Scholar
14. Vendik, O., Zubko, S., M Nikolski, Technical Physics 44, 349 (1999).Google Scholar
15. Tagantsev, A.,Sherman, V.,Astafiev, K., Venkatesh, J., Setter, N., Journal of Electroceramics 11, 5 (2003)Google Scholar
16. Chu, F., Setter, N., A. Tagantsev Journal of Applied Physics 74 5129 (1993); F. Chu, Ph.D. Thesis, Swiss Federal Institute of Technology EPFL (1994).Google Scholar
17. Tyunina, M., Levoska, J., Physical Review B 70, 1 (2004).Google Scholar
18. Bovtun, V., Veljko, S., Kamba, S., Petzelt, J., Vakhrushev, S., Yakymenko, Y., Brinkman, K., and Setter, N., J. European Ceramic Society 26 2867 (2006)Google Scholar
19. Mathan, N., Husson, E., Calvarin, G., Gavarri, J., Hewat, A., Morell, A., Journal of Physics: Condensed Matter 3 8159 (1991).Google Scholar
20. Tyunina, M., Levoska, J., Journal of Applied Physics 97 114107 (2005).Google Scholar