Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T03:59:34.925Z Has data issue: false hasContentIssue false

Patterning PETN and HMX using Dip Pen Nanolithography

Published online by Cambridge University Press:  26 February 2011

Omkar Nafday
Affiliation:
[email protected], Texas Tech University, 6th Street and Canton,, Dept. of Chemical Engineering, Lubbock, TX, 79409, United States, 806-786-5298
Brandon Weeks
Affiliation:
[email protected], Texas Tech University, United States
Jason Haaheim
Affiliation:
[email protected], NanoInk Inc., United States
Ray Eby
Affiliation:
[email protected], NanoInk Inc.
Get access

Abstract

Recently there has been a focused effort to develop reliable nanoscopic writing and reading capabilities. Dip-pen nanolithography (DPN) has emerged as a convenient method to deliver nanoscale materials onto a substrate by leveraging scanning probe microscopy capability. A new application for the DPN method is the field of microdetonics which is the microscale decomposition and study of reactions of explosives. Results are presented for patterning pentaerythritol tetranitrate (PETN) and cyclotetramethylene tetranitramine (HMX) on silicon and mica substrates. The ultimate goal is to pattern both energetic materials in nanoscale registry and investigate their reaction and decomposition at the nanoscale due to heating or shock initiation. In addition to patterning of high explosives, a discussion on the effect of surface energy on patterning rates is investigated. This knowledge will be applicable to inks beyond high explosives.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Piner, R. D., Zhu, J., Xu, F., Hong, S. and Mirkin, C. A., Science, 283, 5402, 661 (1999).Google Scholar
2. Xia, Y. N., Rogers, J. A., Paul, K. E., Whitesides, G. M., Chem. Rev., 99, 7, 1823 (1999).Google Scholar
3. Vieu, C., Carcenac, F., Pepin, A., Chen, Y., Mejias, M., Lebib, A., Manin-Ferlazzo, L., Couraud, L., Launois, H., Appl. Surf. Sci., 164, 1, 111(2000).Google Scholar
4. Zankovych, S., Hoffmann, T., Seekamp, J., Bruch, J. U., Torres, C. M. S., Nanotechnology, 12, 91 (2001).Google Scholar
5. Melngailis, J., J. Vac. Sci. Tech. B: Microelectronics and Nanometer Structures, 5, 2, 469 (1987).Google Scholar
6. Sheehan, P. E. and Whitman, L. J., Phys. Rev. Lett., 88 (15), 6104 (2002).Google Scholar
7. Schwartz, P.V., Langmuir, 18, 4041 (2002).Google Scholar
8. Weeks, B. L., Noy, A., Miller, A. E., De Yoreo, J. J., Phys. Rev. Lett., 88 (25), 5505 (2002).Google Scholar
9. Manandhar, P., Jang, J., Schatz, G. C., Ratner, M. A., Hong, S., Phys. Rev. Lett., 90 (11), 5505 (2003).Google Scholar
10. McKendry, R., Huck, W. T. S., Weeks, B. L., Fiorini, M., Abell, C., Rayment, T., Nano Lett., 2, 713 (2002).Google Scholar
11. Zhang, H., Li, Z., Mirkin, C. A., Adv. Mater., 14, 1472 (2002).Google Scholar
12. Demers, L. M., Ginger, D. S., Park, S. J., Li, Z., Chung, S. W., Mirkin, C. A., Science, 296, 1836 (2002).Google Scholar
13. Lee, K. B., Lim, J. H., Mirkin, C. A., J. Am. Chem. Soc., 125, 5588 (2003).Google Scholar
14. Noy, A., Miller, A. E., Klare, J. E., Weeks, B. L., Woods, B. W., De Yoreo, J. J., Nano Lett., 2 (2), 109 (2002).Google Scholar
15. Su, M., Liu, X. G., Li, S. Y., Dravid, V. P., Mirkin, C. A., J. Am. Chem. Soc., 124, 1560 (2002).Google Scholar
16. Sheehan, P. E., Whitman, L. J., King, W. P., Nelson, B. A., Appl. Phys. Lett., 85 (9), 1589 (2004).Google Scholar
17. Binnig, G., Quate, C. F., Gerber, G. H., Phys. Rev. Lett., 56, 930 (1986).Google Scholar
18. Gruzdkov, Y. A. and Gupta, Y. M., J. Phys. Chem. A, 105, 6197 (2001).Google Scholar
19. Worley, C. M., Vannet, M. D., Ball, G. L., Moddeman, W. E., Surface and Interface Analysis, 10, 273 (1987).Google Scholar
20. Lee, J. S., Hsu, C. K., Chang, C. L., Thermochemica Acta, 392–393, 173 (2002).Google Scholar
21. Zaoui, A. and Sekkal, W., Solid State Communications, 118, 345350 (2001).Google Scholar
22. Gibbs, T.R. and Popolato, A., LASL Explosive Property Data (University of California Press, Berkeley, CA, 1981).Google Scholar
23. George, R. S., Cady, H. C., Rogers, R. N., Rohwer, R. K., Ind. Eng. Chem., Prod. Res. and Dev., 4, 209 (1965).Google Scholar
24. Hoffman, D. M. and Swansiger, R. W., Propellants, Explosives and Pyrotechnics, 24, 301 (1999).Google Scholar
25. Lynch, J. C., Myers, K. F., Brannon, J. M., Delfino, J. J., J. Chem. Eng. Data, 46, 1549 (2001).Google Scholar
26. Ericson, K. L., Skocypec, R. D., Trott, W. M. and Renlund, A. M., Proceedings of the 15th International Pyrotechnics Seminar, Boulder, CO, 239 (1990).Google Scholar
27. Tappan, A. S., Renlund, A. M., Long, G. T., Kravitz, S. H., Ericson, K. L., Trott, W. M. and Baer, Melvin R., Proceedings of the 12th International Detonation Symposium, San Diego, CA, 0810 (1992).Google Scholar
28. Siele, V. I., Warman, M., Leccacorci, J., Hutchinson, R. W., Motto, R., Gilbert, E. E., Benzinger, T. M., Coburn, M. D., Rohwer, R. K. and Davey, R. K., Propellants, Explosives and Pyrotechnics, 6, 67 (1981).Google Scholar
30. Sitzmann, M. E. and Foti, S. C., Journal of Chemical and Engineering Data, 20 (1), 53 (1975).Google Scholar
31. Leggett, D. C., Jenkins, T.F. and Miyares, P.H., Analytical Chemistry, 62, 1335 (1990).Google Scholar
33. Rozhok, S., Piner, R., Mirkin, C. A., J. Phys. Chem. B, 107, 751 (2003).Google Scholar