Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T02:25:37.710Z Has data issue: false hasContentIssue false

Patterning Anodic Porous Alumina with Resist Developers for Patterned Nanowire Formation

Published online by Cambridge University Press:  04 June 2015

SeungYeon. Lee
Affiliation:
Department of Electrical and Computer Engineering, University of Minnesota, Twin Cities, MN 55455, U.S.A.
Daniel Wratkowski
Affiliation:
Department of Electrical and Computer Engineering, University of Minnesota, Twin Cities, MN 55455, U.S.A.
Jeong-Hyun Cho
Affiliation:
Department of Electrical and Computer Engineering, University of Minnesota, Twin Cities, MN 55455, U.S.A.
Get access

Abstract

Formation of patterned metal and semiconductor (e.g. silicon) nanowires is achieved using anodic aluminum oxide (AAO) templates with porous structures of different heights resulting from an initial step difference made by etching the aluminum (Al) thin film with a photoresist developer prior to the anodization process. This approach allows for the growth of vertically aligned nanowire arrays on a metal substrate, instead of an oriented semiconductor substrate, using an electroplating or a chemical vapor deposition (CVD) process. The vertically aligned metal and semiconductor nanowires defined on a metal substrate could be applied to the realization of vertical 3D transistors, field emission devices, or nano-micro sensors for biological applications.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Lu, W., Lieber, C. M., Appl. Phys. Lett., 39, R387 (2006).Google Scholar
Yang, P., Yan, R., Fardy, M., Nano Lett., 10, 1836 (2010).Google Scholar
Dasgupta, N. P., Sun, J., Liu, C., Brittman, S., Andrew, S.. Lim, J., Gao, H., Yan, R., Yang, P., Adv. Mater., 26, 2137 (2014).CrossRefGoogle Scholar
Kawano, T., Kato, Y., Futagawa, M., Takao, H., Sawada, K., Ishida, M., Sens. Actuators A., 97, 709 (2002).CrossRefGoogle Scholar
Ishida, M., Kawano, T., Futagawa, M., Arai, Y., Takao, H., Sawada, K., Superlattices Microstruct., 34, 567 (2003).CrossRefGoogle Scholar
Poinern, G., Ali, N., Fawcett, D., Materials, 4, 487 (2011).CrossRefGoogle Scholar
Huanga, Q., Lye, W. K., Reed, M., Appl. Phys. Lett., 88, 233112 (2006).CrossRefGoogle Scholar
Jee, S. E., Lee, P. S., Yoon, B. J., Jeong, S. H., Lee, K. H., Chem. Mater., 17, 4049 (2005).CrossRefGoogle Scholar
Patolsky, F., Zheng, G., Lieber, C. M., Nat. Protoc., 1, 1711 (2006).CrossRefGoogle Scholar
Adachi, M. M., Anantram, M. P., Karim, K. S., Sci. Rep., 3, 1546 (2013).CrossRefGoogle Scholar
Goldberger, J., Hochbaum, A., Fan, R., Yang, P., Nano Lett., 6, 973 (2006).CrossRefGoogle Scholar
Nadeem, A., Mescher, M., Rebello, K., Weiss, L., Wu, C., Feldman, M., Reed, M., Proc. 11th int. Microelectromech. Syst., 274 (1998).Google Scholar
Yanb, G., Chana, P. C. H., Hsingc, I. M., Sharmaa, R. K., Sina, J. K.O., Wang, Y., Sens. Actuators A., 89, 135 (2001).Google Scholar