Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T18:04:53.888Z Has data issue: false hasContentIssue false

Patterned Magnetic Recording Media – Issues and Challenges

Published online by Cambridge University Press:  14 April 2016

Horia Gavrila
Affiliation:
“Politehnica”University of Bucharest, 313 Splaiul Independentei, Bucharest 060042, Romania
Doina Elena Gavrila
Affiliation:
“Politehnica”University of Bucharest, 313 Splaiul Independentei, Bucharest 060042, Romania
Get access

Abstract

The conventional magnetic recording approached the physical frontiers of the recording density. The magnetic recording must face the famous trilemma: In order to increase the recording density, smaller grain volumes are needed, but in order to ensure the thermal stability of recorded information, the anisotropy constant should be increased accordingly; what results is an increased anisotropy field, which requires higher writing fields. Such fields are unavailable with the maximum saturation magnetization obtainable with the magnetic materials of the current heads. In order to overcome these problems, new media structures have been proposed. The most promising is the bit-patterned magnetic media (BPM), intensively studied over the last years with the aim of obtaining obtain an ultra-high recording density of hard-disk drives. A BPM comprises monodisperse high-anisotropy nano-particles in a self-organized patterning. They have a higher thermal stability, a lower noise and a higher signal resolution, which leads to a higher recording density and a better SNR. They eliminate the transition noise and, due to the large fraction of the bit volume occupied by the magnetic dots, improve thermal stability. Nevertheless, some important issues such as long-range patterning, control of the surface roughness, signal readout, etc., remain critical problems to solve. Another challenge is the fact that recording on BPM is sensitive to the material and geometry parameter fluctuations that may lead to additional constraints and require tight synchronization of the write-field misregistration time and bit positions. A possible route to higher recording densities is to use a multilevel recording, where more than two states are stored per dot.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Wang, S.X. and Tartorin, A.M., Magnetic Information Storage Technology, Academic Press, New York – London, 1999.Google Scholar
Gavrilă, H., Magnetic Recording (in Romanian). Printech, Bucharest, 2005.Google Scholar
Weller, D. and Moser, A., I.E.E.E. Trans. Magn. 35, 4423 (1999).Google Scholar
Osaka, T., Datta, M., and Shachan-Diamond, Y., in Nanostructure Science and Technology, New York, Springer, 2010, p.113.Google Scholar
Rottmayer, R.E. et al. , IEEE Trans. Magn. 42, 2417 (2006).Google Scholar
Shiroishi, Y. et al. , I.E.E.E. Trans. Magn. 45, 3816 (2009).Google Scholar
Kryder, M.H. et al. , Proc.. I.E.E.E. 96, 1810 (2008).Google Scholar
Zhu, J.-G., Zhu, X., and Tang, Y., I.E.E.E. Trans. Magn. 44, 125 (2008).Google Scholar
Richter, H.J., J. Phys. D Vol. 40 (2007), p. R14910.1088/0022-3727/40/9/R01CrossRefGoogle Scholar
New, R.M.H., Pease, R.F.W., and White, R.L., J. Vac. Sci. Technol. B12, 3196 (1994).10.1116/1.587499CrossRefGoogle Scholar
Chou, S.Y., Krauss, P.R., and Kong, L., J. Appl. Phys. 79, 6101 (1996).10.1063/1.362440CrossRefGoogle Scholar
White, R.L., New, R.M.W., and Pease, R.F.W., I.E.E.E. Trans. Magn. 33, 990 (1997).Google Scholar
Majetich, S.A. and Sin, Y., Science 284, 470 (1999).10.1126/science.284.5413.470CrossRefGoogle Scholar
Gavrila, H., J. Optoelectronics Adv. Mater. 6, 891 (2004).Google Scholar
Gavrila, H., J. Optoelectronics Adv. Mater. 10, 757 (2008).Google Scholar
Terris, B.D., Thomson, T., and Hu, G., Microsyst. Technol. 13, 189 (2007).10.1007/s00542-006-0144-9CrossRefGoogle Scholar
Greaves, S.J., Kanai, Y., and Muraoka, H., I.E.E.E. Trans. Magn. 44, 3430 (2008).10.1109/TMAG.2008.2002365CrossRefGoogle Scholar
Albrecht, T.R. et al. , in Nanoscale Magnetic Materials and Applications (Liu, J.P. et al. , Ed.), Dordrecht: Springer, 2009, p.237.10.1007/978-0-387-85600-1_9CrossRefGoogle Scholar
Hughes, G.F., in The Physics of Ultra-High-Density Magnetic Recording (Plumer, M.L., Van Ek, J., Weller, D., Ertl, G., Eds.), Springer, Berlin, 2001, Chap.7.Google Scholar
Thielen, M., Kirsch, S., Weinforth, H., Carl, A., and Wassermann, E.F.., I.E.E.E. Trans. Magn. 34, 1009 (1998).10.1109/20.706340CrossRefGoogle Scholar
Landis, S., Rodmack, B., Diény, B., Dal’Zotto, B., Tedesco, S., and Heitzmann, M., Appl. Phys. Lett. 75, 2473 (1999).10.1063/1.125052CrossRefGoogle Scholar
Weller, D. et al. , J. Appl. Phys. 87, 5768 (2000).10.1063/1.372516CrossRefGoogle Scholar
Haginoya, C. et al. , J. Appl. Phys. 85, 8327 (1999).10.1063/1.370678CrossRefGoogle Scholar
Rettner, C.T., Best, M.E., and Terris, B.D., I.E.E.E. Trans. Magn. 37, 1649 (2001).10.1109/20.950927CrossRefGoogle Scholar
Johnson, K.E., J. Appl. Phys. 87, 5365 (2000).10.1063/1.373349CrossRefGoogle Scholar
Terris, B.D. et al. , Appl. Phys. Lett. 75, 403 (1999).10.1063/1.124389CrossRefGoogle Scholar
Sun, S., Murray, C.H., Weller, D., Folks, L., and Moser, A., Science 287, 1989 (2000).10.1126/science.287.5460.1989CrossRefGoogle Scholar
Puntes, V.F., Alivisatos, P., Krishnan, K., in Magnetic Hysteresis in Novel Magnetic Materials (Hadjipanayis, G.C., Ed.), Kluwer Academic Publishers (1997); p.381.Google Scholar
Suess, D. et al. , Appl. Phys. Lett. 87, 012504 (2005).10.1063/1.1951053CrossRefGoogle Scholar
Victora, R.H. and Chen, X., I.E.E.E. Trans. Magn. 41, 537 (2005).10.1109/TMAG.2004.838075CrossRefGoogle Scholar
Pfau, B. et al. , Appl. Phys. Lett. 99, 062502 (2011).10.1063/1.3623488CrossRefGoogle Scholar
Albrecht, T.R. et al. , I.E.E.E. Trans. Magn. 51, 0800342 (2015).10.1109/TMAG.2015.2397880CrossRefGoogle Scholar
Lubarda, M.V. et al. , I.E.E.E. Trans. Magn. 47, 18 (2011).10.1109/TMAG.2010.2089610CrossRefGoogle Scholar
Pfau, B. et al. , Appl. Phys. Lett. 105, 132407 (2014).10.1063/1.4896982CrossRefGoogle Scholar
Honda, N., Yamakawa, K., and Ouchi, K., I.E.E.E. Trans. Magn. 43, 2142 (2007).10.1109/TMAG.2007.893139CrossRefGoogle Scholar
Honda, N., Yamakawa, K., and Ouchi, K., I.E.E.E. Trans. Magn. 44, 3438 (2008).10.1109/TMAG.2008.2002528CrossRefGoogle Scholar
Honda, N., Yamakawa, K., Ariake, J., Kondo, Y., and Ouchi, K., I.E.E.E. Trans. Magn. 47, 11 (2011).10.1109/TMAG.2010.2078802CrossRefGoogle Scholar
Terris, B.D. and Thomson, T., J. Appl. Phys. D 38, R199 (2005).10.1088/0022-3727/38/12/R01CrossRefGoogle Scholar
Gavrila, H., presented at. EUROMAT 2011, Montpellier, September 2011.Google Scholar
Terris, B.D., Albrecht, M., Hu, G., Thomson, T., and Rettner, C.T., I.E.E.E. Trans. Magn. 41, 2822 (2005).10.1109/TMAG.2005.855264CrossRefGoogle Scholar
Sun, S., Weller, D., Murray, C.B., in The Physics of Ultra-High-Density Magnetic Recording (Plumer, M.L., van Ek, J., D.Weller, , Eds.), New York: Springer-Verlag, 2001; p.249.10.1007/978-3-642-56657-8_9CrossRefGoogle Scholar
Mayes, E.L. et al. , I.E.E.E. Trans. Magn. 39, 624 (2003).10.1109/TMAG.2003.808982CrossRefGoogle Scholar
Wang, J.-P., Qiu, J.-M., Taton, T.A., and Kim, B.-S., I.E.E.E. Trans. Magn. 42, 3042 (2006).10.1109/TMAG.2006.880150CrossRefGoogle Scholar
Sasaki, Y. et al. , I.E.E.E. Trans. Magn. 41, 660 (2005).10.1109/TMAG.2004.838040CrossRefGoogle Scholar
Warne, B. et al. , I.E.E.E. Trans. Magn. 36, 3009 (2000).10.1109/20.908658CrossRefGoogle Scholar
Richter, H.J. et al. , I.E.E.E. Trans. Magn. 42, 2255 (2006).10.1109/TMAG.2006.878392CrossRefGoogle Scholar
Talbot, J.E., Kalezhi, J., Barton, C., Heldt, G., and Miles, J., I.E.E.E. Trans. Magn. 50, 321807 (2014).10.1109/TMAG.2014.2308481CrossRefGoogle Scholar
Chunsheng, , Smith, E.D., Khizroev, S., Litvinov, D., I.E.E.E. Trans. Magn. 42, 2411 (2006).10.1109/TMAG.2006.878397CrossRefGoogle Scholar
Nutter, P.W., McKirdy, D.A., Middleton, B.K., Wilton, D.T., and Shute, H.A., I.E.E.E. Trans. Magn. 40, 3551 (2004).10.1109/TMAG.2004.835697CrossRefGoogle Scholar
Nutter, P.W., Ntokas, I.T., Middleton, B.K., and Wilton, D.T., I.E.E.E. Trans. Magn. 41, 3214 (2005).10.1109/TMAG.2005.854780CrossRefGoogle Scholar
Kundu, S. et al. , I.E.E.E. Trans. Magn. 50, 3200206 (2014).10.1109/TMAG.2013.2285938CrossRefGoogle Scholar
Richter, H.J. et al. , J. Appl. Phys. 111, 033903 (2012).10.1063/1.3681297CrossRefGoogle Scholar
Muraoka, H. and Greaves, S.J., I.E.E.E. Trans. Magn. 47, 26 (2011).10.1109/TMAG.2010.2080354CrossRefGoogle Scholar
Stipe, B.C. et al. , Nature Photon. 4, 484 (2010).10.1038/nphoton.2010.90CrossRefGoogle Scholar
Victora, R.H. et al. , I.E.E.E. Trans. Magn. 51, 3200307 (2015).Google Scholar