Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-24T22:27:41.295Z Has data issue: false hasContentIssue false

Pathway of Porous Silicon Formation Inside Si Nanowires Throughout Metal Assisted Etching

Published online by Cambridge University Press:  12 April 2012

Alexander A. Tonkikh
Affiliation:
Max Planck Institute of Microstructure Physics, 2 Weinberg, Halle, D-06120, Germany
Nadine Geyer
Affiliation:
Max Planck Institute of Microstructure Physics, 2 Weinberg, Halle, D-06120, Germany
Bodo Fuhrmann
Affiliation:
Interdisciplinary Center of Materials Science, Martin Luther University Halle-Wittenberg, 4 Heinrich-Damerow Str., D-01620 Halle, Germany
Hartmut S. Leipner
Affiliation:
Interdisciplinary Center of Materials Science, Martin Luther University Halle-Wittenberg, 4 Heinrich-Damerow Str., D-01620 Halle, Germany
Peter Werner
Affiliation:
Max Planck Institute of Microstructure Physics, 2 Weinberg, Halle, D-06120, Germany
Get access

Abstract

The selective formation of porous silicon in nanowires is observed in Si/Ge epitaxial layers along Ge layers grown by molecular beam epitaxy on a Si(100) substrate after metal-assisted chemical etching in aqueous HF-H2O2 solution. We assume that Ge layers serve as channels for a hole current out of the semiconductor to sustain the dissolution reaction. The tunnelling of holes through the potential barrier at the semiconductor surface is assumed to be the dominating mechanism of the hole transfer to the electrolyte.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Cui, Y. and Lieber, C.M., Science 291, 851 (2000).Google Scholar
2. Goldberger, J., Hochbaum, A.I., Fan, R., Yang, P., Nano Lett. 6, 973 (2006).Google Scholar
3. Canham, L.T., Appl. Phys. Lett. 57, 1046 (1990).Google Scholar
4. Agarwal, R., Lieber, C.M., Appl. Phys. A: Mater. Sci. Proc. 85, 209 (2006).Google Scholar
5. Hochbaum, A.I., Chen, R., Delgado, R. D., Liang, W., Garnett, E.C., Najarian, M., Majumdar, A., and Yang, P., Nature 451, 163 (2008).Google Scholar
6. Zhang, X. G., J. Electrochem. Soc. 151, C69 (2004).Google Scholar
7. Schubert, L., Werner, P., Zakharov, N.D., Gerth, G., Kolb, F.M., Long, L., Gösele, U., and Tan, T.Y., Appl. Phys. Lett. 84, 4968 (2004).Google Scholar
8. Huang, Zh., Zhang, X., Reiche, M., Liu, L., Lee, W., Shimizu, T., Senz, S., and Gösele, U., NanoLett. 8, 3046 (2008).Google Scholar
9. Li, X. and Bohn, P. W., Appl. Phys. Lett. 77, 2572 (2000).Google Scholar
10. Huang, Zh., Geyer, N., Werner, P., de Boor, J., and Gösele, U., Adv. Mater., 23, 285 (2011).Google Scholar
11. Zhong, X., Qu, Y., Lin, Y.-C., Liao, L., and Duan, X., Appl. Mater. Interfaces, 3, 261 (2011).Google Scholar
12. Zhang, X.G., “Electrochemistry of Silicon and Its Oxide”, (Kluwer Academic, 2001), pp.9-77.Google Scholar
13. Ronga, I., Bsiesy, A., Gaspard, F., Herino, R., Ligeon, M., Muller, F., Halimaoui, A., J. Electrochem. Soc., 138, 1403 (1991).Google Scholar
14. Sze, S.M., Kwok, K. Ng., “Physics of semiconductor devices”, (Wiley-Interscience, 2007), pp.24-27.Google Scholar
15. Gaspard, F., Bsiesy, A., Ligeon, M., Muller, F., and Herino, R., J. Electrochem. Soc., 136, 3043 (1989).Google Scholar
16. Paul, D.J., Semicond. Sci. Technol. 19, R75 (2004).Google Scholar