Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-28T05:12:02.089Z Has data issue: false hasContentIssue false

Particle Swarm Optimization for Milling Titanium Alloy

Published online by Cambridge University Press:  14 February 2012

I. Escamilla
Affiliation:
Facultad de Ingeniería Mecánica y Eléctrica. Ave. Universidad s/n. San Nicolás de los Garza, N. [email protected]
L. Torres
Affiliation:
Facultad de Ingeniería Mecánica y Eléctrica. Ave. Universidad s/n. San Nicolás de los Garza, N. [email protected]
B. Gonzalez
Affiliation:
Facultad de Ingeniería Mecánica y Eléctrica. Ave. Universidad s/n. San Nicolás de los Garza, N. [email protected]
P. Zambrano
Affiliation:
Facultad de Ingeniería Mecánica y Eléctrica. Ave. Universidad s/n. San Nicolás de los Garza, N. [email protected]
Get access

Abstract

Optimum machining parameters are of great concern in manufacturing environments, where economy of machining operation plays a key role in competitiveness in the market. Many researchers have dealt with the optimization of machining parameters for milling operations. In this paper, optimization procedures based on particle swarm optimization algorithm are developed for find machining parameters in milling operation. It describes development and utilization of the methodology that determines optimum Pareto’s front analyzing feed, speed and depth for milling operation. The relationships between machining parameters and the performance measures of interest are obtained by using experimental data and a swarm intelligent neural network system. Results show that particle swarm optimization is an effective method for solving multi-objective optimization problems, and also, that an integrated system of neural networks and swarm intelligence can be used to solve complex machining optimization problems.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Brunette, J, Jeu-Herault, M, Songmene, V, Masounave, J (2004). Mach Sci Technol 8(1):141170 Google Scholar
2. Davim, JP, Silva, LR, Festas, A, Abrao, AM (2009). Mater Des 30:228234 Google Scholar
3. Caydas, U, Hascalik, A (2008) J Mater Process Technology 202(1–3):574582 Google Scholar
4. Eberhart, R.C., Kennedy, J., Piscataway, NJ, 1995, pp. 19421948.Google Scholar
5. Coello, C.A. and Lechuga, M.S., (2002) Proceedings of IEEE, World Congress on Computational Intelligence, 2002, pp.10511056 Google Scholar
6. Jesuthanam, CP, Kumanan, S, Asokan, P (2007). Mach Sci Technology 11(2):271286 Google Scholar
7. Ozel, T, Karpat, Y (2005). Int J Mach Tools Manuf 45(4–5):467479 Google Scholar