Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T09:21:59.772Z Has data issue: false hasContentIssue false

Particle adhesion: interaction forces and mechanical effects: extrapolation to the nanometer-size range

Published online by Cambridge University Press:  10 February 2011

D. S. Rimai
Affiliation:
Office Imaging, Eastman Kodak Company, Rochester, NY 14653-6402
L. P. Demejo
Affiliation:
Office Imaging, Eastman Kodak Company, Rochester, NY 14653-6402
B. Gady
Affiliation:
Office Imaging, Eastman Kodak Company, Rochester, NY 14653-6402
D. J. Quesnel
Affiliation:
Office Imaging, Eastman Kodak Company, Rochester, NY 14653-6402
R. C. Bowen
Affiliation:
Johnson and Johnson Clinical Diagnostics, Rochester, NY 14650-2117
R. Reifenberger
Affiliation:
Department of Physics, Purdue University, West Lafayette, IN 47907
A. A. Busnaina
Affiliation:
Department of Mechanical Engineering, Clarkson University, Potsdam, NY 13699
Get access

Abstract

The physics of particle adhesion is a complex subject and depends on the interaction mechanisms and the mechanical properties of the contacting materials. These interactions, which tend to be caused by van der Waals and electrostatic interactions, generate stresses that, in turn, result in deformations of the contacting materials. Most of today's understanding of particle adhesion is based on theories that assume that the adhesion-induced strains are small. However, for small particles, the strains can be quite large, resulting in yielding and plastic deformations. In some instances, the entire particle can become engulfed by the substrate. This paper discusses the nature of the deformations, as are presently known, and extrapolates today's understanding of particle adhesion, which is based on the micrometer-size scale, to nanometer-size particles.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Mittal, K. L. (editor), Particles on Surfaces 1: Detection, Adhesion, and Removal, Plenum Press, New York (1988).Google Scholar
2 Mittal, K. L. (editor), Particles on Surfaces 2: Detection, Adhesion, and Removal, Plenum Press, New York (1989).Google Scholar
3 Mittal, K. L. (editor), Particles on Surfaces 3: Detection, Adhesion, and Removal, Plenum Press, New York (1991).Google Scholar
4 Rimai, D. S. and Sharpe, L. H. (editors), Advances in Particle Adhesion, Gordon and Breach, Amsterdam (1996).Google Scholar
5 Schein, L. B., Electrophotography and Development Physics, Laplacian Press, Morgan Hill (1996).Google Scholar
6 Hair, M. and Croucher, M. D., Colloids and Surfaces in Reprographic Technology, ACS, Washington (1982).Google Scholar
7 Brown, R. C., Air Filtration, Pergamon Press, Tarrytown (1993).Google Scholar
8 Lam, K. K. and Newton, J. M., Powder Technol. 73, 267 (1992).Google Scholar
9 Mahoney, W., Schaefer, D. M., Patil, A., Andres, R. P., and Reifenberger, R., Surface Science 316, 383 (1994).Google Scholar
10 Schaefer, D.M., Mahoney, W., Patil, A., Andres, R. P., and Reifenberger, R., in Proceedings of the 20th Annual Meeting of the Adhesion Society, Drzal, L. T. and Schreiber, H. P. (editors), Adhesion Society, 1997, pp. 233237.Google Scholar
11 Ott, M. L., in Proceedings of the 19th Annual Meeting of the Adhesion Society, Ward, T. C. (editor), Adhesion Society, 1996, pp. 7073.Google Scholar
12 Busnaina, A. A., Kashkoush, I. I., and Gale, G. W., J. Electrochemical Soc. 148, 2812 (1995).Google Scholar
13 Bradley, R. S., Philos. Mag. 13, 853 (1932).Google Scholar
14 Bradley, R. S., Trans. Faraday Soc. 32, 1088 (1936).Google Scholar
15 Derjaguin, B. V., Kolloid Z. 69, 155 (1934).Google Scholar
16 Lifshitz, E. M., Soviet Phys. JEPT 2, 73 (1956).Google Scholar
17 Krupp, H., Advan. Colloid Interface Sci. 1, 111 (1967).Google Scholar
18 Johnson, K. L., Kendall, K., and Roberts, A. D., Proc. R. Soc. London, Ser. A 324, 301 (1971).Google Scholar
19 Derjaguin, B. V., Muller, V. M., and Toporov, Yu. P., J. Colloid Interface Sci. 53, 314 (1975).Google Scholar
20 Tabor, D., J. Colloid Interface Sci. 58, 2 (1977).Google Scholar
21 Derjaguin, B. V., Muller, V. M., and Toporov, Yu. P., J. Colloid Interface Sci. 67, 378 (1978).Google Scholar
22 Tabor, D., J. Colloid Interface Sci. 67, 380 (1978).Google Scholar
23 Muller, V. M., Yushchenko, V. S., and Derjaguin, B. V., J. Colloid Interface Sci. 77, 91 (1980).Google Scholar
24 Muller, V. M., Yushchenko, V. S., and Derjaguin, B. V., Colloids Surfaces 7, 251 (1983).Google Scholar
25 Fuller, K. N. G. and Tabor, D., Proc. R. Soc. London, Ser. A 345, 327 (1975).Google Scholar
26 Schaefer, D. M., Carpenter, M., Gady, B., Reifenberger, R., DeMejo, L. P., and Rimai, D. S., in Fundamentals of Adhesion and Interfaces, Rimai, D. S., DeMejo, L. P., and Mittal, K. L. (editors), VSP, Utrecht, 1995, pp. 3548.Google Scholar
27 Rogers, L. N. and Reed, J., J. Phys. D. 17, 677 (1984).Google Scholar
28 Handbook of Chemistry and Physics, 68th edition, Weast, R. C. (editor), CRC Press, Boca Raton, 1987, pg. F27.Google Scholar
29 Maugis, D. and Pollock, H. M., Acta Metall. 32, 1323 (1984).Google Scholar
30 Rimai, D. S., Moore, R. S., Bowen, R. C., Bowen, R. C., Smith, V. K., and Woodgate, P. E., J. Mater. Res. 8, 662 (1993).Google Scholar
31 Rimai, S., DeMejo, L. P., and Bowen, R. C., J. Adhesion 51, 139 (1995).Google Scholar
32 Quesnel, D. J., Rimai, D. S., and DeMejo, L. P., Solid State Commun. 85, 171 (1993).Google Scholar
33 Quesnel, D. J., Rimai, D. S., and DeMejo, L. P., Phys. Rev. B 48, 6795 (1993).Google Scholar
34 Quesnel, D. J., Rimai, D. S., and DeMejo, L. P., J. Adhesion Sci. Technol. 9, 1015 (1995).Google Scholar
35 Quesnel, D. J., Rimai, D. S., and DeMejo, L. P., J. Adhesion 51, 49 (1995).Google Scholar
36 Quesnel, D. J., Rimai, D. S., and DeMejo, L. P., Adhesion, J., in press (1997).Google Scholar
37 Rimai, D. S. and DeMejo, L. P., Annu. Rev. Mater. Sci. 26, 21 (1996).Google Scholar