Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-28T20:52:14.555Z Has data issue: false hasContentIssue false

Oxide Quantum Structures for Future Electro-Photonics

Published online by Cambridge University Press:  15 February 2011

M. Kawasaki
Affiliation:
Dept. Innovative and Engineering Materials, Tokyo Institute of Technology Nagatsuta, Midori, Yokohama 226, Japan
A. Ohtomo
Affiliation:
Dept. Innovative and Engineering Materials, Tokyo Institute of Technology Nagatsuta, Midori, Yokohama 226, Japan
R. Tsuchiya
Affiliation:
Materials and Structures Laboratory, Tokyo Institute of Technology Nagatsuta, Midori, Yokohama 226, Japan
J. Nishino
Affiliation:
Materials and Structures Laboratory, Tokyo Institute of Technology Nagatsuta, Midori, Yokohama 226, Japan
H. Koinuma
Affiliation:
Materials and Structures Laboratory, Tokyo Institute of Technology Nagatsuta, Midori, Yokohama 226, Japan CREST-Japan Science and Technology Corporation, Nagatsuta, Midori, Yokohama 226, Japan
Get access

Abstract

We show our recent development on the epitaxial growth of oxide thin films by laser molecular beam epitaxy directed towards a possible new field of electro-photonics based on metal-oxide quantum structures. Examples of quantum structures include superlattices and tunnel junctions (2-dimensional), superconducting quantum wire arrays (1-dimensional), and quantum dots for photonic application (O-dimensional). For fabricating such structures, it is vitally important to prepare the substrate surface and to understand the growth dynamics. Such electro-phptonic functions as Josephson effect in high Tc tunnel junctions and excitonic UV-laser operation at room temperature in self-organized hexagonal nanocrystal ZnO films are presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Bednorz, J. G. and Muller, K. A., Z. Phys. B. 64, 189 (1986).Google Scholar
[2] Koinuma, H., MRS Bulletin 19, (9) 21 (1994).Google Scholar
[3] Koinuma, H., Kawasaki, M., and Yoshimoto, M., Proc. Mat. Res. Soc. Symp. 397, 145 (1996).Google Scholar
[4] Hashimoto, H., Koinuma, H., and Kishio, K, Jpn. J. Appl. Phys. 30, 1685 (1991).Google Scholar
[5] Kawasaki, M., Takahashi, K., Maeda, T., Tsuchiya, R., Shinohara, M., Ishiyama, O., Yonezawa, T., Yoshimoto, M., and Koinuma, H., Science 266, 1540 (1994).Google Scholar
[6] Kawasaki, M., Gong, J. P., Nantoh, M., Hasegawa, T., Kitazawa, K., Kumagai, M., Hirai, K., Horiguchi, K., Yoshimoto, M., and Koinuma, H., Jpn. J. Appl. Phys., 32, 16121616 (1993)Google Scholar
[7] Kawasaki, M. and Nantoh, M., MRS Bulletin 19, (9) 33 (1994).Google Scholar
[8] Maeda, T., Lee, G. H., Ohnishi, T., Kawasaki, M., Yoshimoto, M., and Koinuma, H., Mat. Sci. Eng. B, 41 143147(1996)Google Scholar
[9] Koinuma, H., Yoshimoto, M., Nagata, H., and Tsukahara, T., Solid State Commun., 80, 9 (1991).Google Scholar
[10] Koinuma, H., Kanda, N., Nishino, J., Ohtomo, A., Kubota, H., Kawasaki, M., and Yoshimoto, M., Appl. Surf. Sci., 109/110, 514 (1997).Google Scholar
[11] Gong, J. P., Kawasaki, M., Fujito, K., Tsuchiya, R., Yoshimoto, M., and Koinuma, H., Phys. Rev. B 50, 3280(1994).Google Scholar
[12] Kanda, N., Kawasaki, M., Kitajima, T., Koinuma, H., submitted to Phys. Rev. B.Google Scholar
[13] Scheel, H. J., MRS Bulletin 19, (9) 26 (1994).Google Scholar
[14] Kanda, N., Kawasaki, M., Nakano, K., Shiraishi, T., Takáno, A., and Koinuma, H., Jpn. J. Appl. Phys., 36, in press.Google Scholar
[15] Gonda, S., Nagata, H., Kawqasaki, M., Yoshimoto, M., and Koinuma, H., Physica C, 216, 160 (1993)Google Scholar
[16] Olsson, E., Gupta, A., Thouless, M. D., Segmuller, R., and Clarke, D. R., Appl. phys. Lett., 58, 1682(1991).Google Scholar
[17] Fujito, K., Kawasaki, M., Gong, J. P., Tsuchiya, R., Yoshimoto, M., and Koinuma, H., Trans. Mat. Res. Jpn. 19A, 541 (1994).Google Scholar
[18] Inam, A., Rogers, C. T., Ramesh, R., Remchning, K., Farrow, L., Hart, D., Venkatesan, T., and Wilkens, B., Appl. phys. Lett., 57, 2484 (1990).Google Scholar
[19] Koinuma, H., Fujito, K., Tsuchiya, R., and Kawasaki, M., Physica C 235–240, 731 (1994).Google Scholar
[20] Gong, J. P., Kawasaki, M., Fujito, K., Tsuchiya, R., Yoshimoto, M., and Koinuma, H., Jpn. J. Appl. Phys., 33, L20 L23 (1994)Google Scholar
[21] Sato, H., Akoh, H., and Takada, S., Appl. phys. Lett., 64, 1286 (1994).Google Scholar
[22] Tsuchiya, R., Kawasaki, M., Kubota, H., Nishino, J., Sato, H., Akoh, H., and Koinuma, H., submitted to Appl. Phys. Lett.Google Scholar
[23] Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Sugimoto, Y., and Kiyoku, H., Appl. phys. Lett., 69 (1996) 4056.Google Scholar
[24] Yu, P., Tang, Z. K., Wong, George K. L., Kawasaki, M., Ohtomo, A., Koinuma, H., and Segawa, Y., Proc. Int'l Conf. on the Phys. of Semicond. Vol. 2 1453 (1996).Google Scholar