Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-12T04:04:20.825Z Has data issue: false hasContentIssue false

Oxide Mediated Epitaxial Growth of CoSi2 in a Single Deposition Step

Published online by Cambridge University Press:  10 February 2011

S. Ohmi
Affiliation:
Lucent Technologies Bell Labs., Murray Hill, N.J. 07974
R. T. Tung
Affiliation:
Lucent Technologies Bell Labs., Murray Hill, N.J. 07974
Get access

Abstract

A number of modifications of the oxide-mediated epitaxy (OME) technique are presented which have enabled the growth of thick (∼25–40nm) epitaxial CoSi2 layers in a single deposition sequence. The uses of (a) a thin Ti cap, (b) a thin Ti blocking layer, (c) the codeposition of Co-rich CoSix, and (d) the co-deposition of Col−xTix. have all been shown to lead to improved epitaxial quality over the pure Co OME process, for Co thickness greater than 6nm. Essentially uniform, single crystal silicide layers of over 25nm have been grown in a single deposition step. These results are supportive of the proposed role of a diffusion barrier/kinetics retarder on the part of the interlayer in the OME and the Ti-interlayer mediated epitaxy processes.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Lasky, J. B., Nakos, J. S., Cain, O. J., and Geiss, P. J., IEEE Trans. ED–38, 262 (1991).10.1109/16.69904Google Scholar
2. Tung, R. T. and Inoue, K., Inst. Phys. Conf. Ser. 157, 487 (1997).Google Scholar
3. Liu, R., Williams, D. S., and Lynch, W. T., J. App. Phys. 63, 1990 (1988).10.1063/1.341099Google Scholar
4. Herner, S. B., Gossmann, H. - J., and Tung, R. T.,, Electrochem. Solid-St. Lett. 1, 150 (1998).10.1149/1.1390667Google Scholar
5. Inoue, K., Mikagi, K., Abiko, H., and Kikkawa, T., IEDM Tech. Dig. 445 (1995).Google Scholar
6. Dass, M. L. A., Fraser, D. B., and Wei, C. S., Appl. Phys. Lett. 58, 1308 (1991).10.1063/1.104345Google Scholar
7. Byun, J. S., Seon, J. M., and Hwang, H., MRS Symp. Proc. 402, 167 (1996).10.1557/PROC-402-167Google Scholar
8. Tung, R. T. and Schrey, F., MRS Symp. Proc. 402, 173 (1996).10.1557/PROC-402-173Google Scholar
9. Tung, R. T., Appl. Phys. Lett. 68, 3461 (1996).10.1063/1.115793Google Scholar
10. Berti, A. C. and Bolkhovsky, V., Proc. VMIC Conf. 1992, p. 267.Google Scholar
11. Maex, K., Kondoh, E., Lauwers, A., Steegen, A., De Potter, M., Besser, P., and Proost, J., MRS Symp. Proc. 525, 297 (1998).10.1557/PROC-525-297Google Scholar
12. Tung, R. T. and Schrey, F., Appl. Phys. Lett. 67, 2164 (1995).10.1063/1.114754Google Scholar
13. Tung, R. T., MRS Symp. Proc. 427, 481 (1996).10.1557/PROC-427-481Google Scholar
14. Tung, R. T. and Ohmi, S., to be published.Google Scholar
15. Hsia, S. L., Tan, T. Y., Smith, P., and McGuire, G. E., J. Appl. Phys. 70, 1864 (1992).10.1063/1.351659Google Scholar
16. linuma, T., Akutsu, H., Ohuchi, K., and Suguro, K., VLSI Tech. Dig. 188 (1998).Google Scholar
17. Pretorius, R. and Mayer, J. W., J. Appl. Phys. 81, 2448 (1997).10.1063/1.364252Google Scholar
18. Ho, C. S., Karunasiri, R. P. G., Chua, S. J., Pey, K. L., Tung, C. H., Tee, K. C., Wong, H., Lee, K. H., Tan, J., Saigal, D., and Osipowicz, T., these proceedings.Google Scholar