Published online by Cambridge University Press: 16 February 2015
Intermetallic titanium aluminides solidifying via the disordered β-phase are of great interest for several high-temperature applications in automotive and aircraft industries. In this paper the thermocyclic oxidation behavior of three β-solidifying γ-TiAl-based alloys at 800°C and 900°C in air, with and without fluorine treatment, is reported for the first time. The behavior of the well-known TNM alloy (Ti-43.5Al-4Nb-1Mo-0.1B, in at.%) is compared with that of two Nb-free model alloys which contain different amounts of Mo (Ti-44Al-3Mo and Ti-44Al-7Mo, in at.%). During thermocyclic high-temperature exposure in air a mixed oxide scale develops on all three untreated alloys. Small additions of fluorine in the subsurface region of the alloys change the oxidation mechanism from mixed oxide scale formation to alumina at both temperatures. The oxidation resistance of the fluorine treated samples was significantly improved compared to the untreated samples.