Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-24T15:51:36.975Z Has data issue: false hasContentIssue false

Oxidation of NiSi and Ni(Pt)Si: Molecular vs. Atomic Oxygen

Published online by Cambridge University Press:  01 February 2011

Sudha Manandhar
Affiliation:
[email protected], University of North Texas, Department of Chemistry, Denton, TX, 76203, United States
Brian Copp
Affiliation:
[email protected], University of North Texas, Department of Materials Science and Engineering, Denton, TX, 76201, United States
Chiranjeevi Vamala
Affiliation:
[email protected], University of North Texas, Department of Materials Science and Engineering, Denton, TX, 76201, United States
Jeffry Kelber
Affiliation:
[email protected], University of North Texas, Department of Chemistry, Denton, TX, 76203, United States
Get access

Abstract

X-ray photoelectron spectroscopy (XPS) has been used to characterize the reactivities of clean, stoichiometric NiSi and Ni(Pt)Si films on n-doped Si(100) substrates in O2, and in O+O2 environments. In the presence of O+O2, NiSi and Ni(Pt)Si form Ni silicate and Pt silicate overlayers, respectively, with oxide/silicate overlayer thicknesses of 41(4) Å (NiSi) and 28(3) Å (Ni(Pt)Si) after 4.5x104 L exposure. Exposure to O2 yields, for each material, a ∼7(1) Å thick SiO2 overlayer without transition metal oxidation. O+O2 induces rapid Si oxidation, formation of metal-rich silicides, and then the kinetically-driven oxidation of Ni or Pt to form a silicate. This may pose significant processing problems in silicate removal and unwanted Ni diffusion into other areas of the device.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Bonnetier, S. Imbert, B. Hopstaken, M. Galpin, D. Gwozliecki, R. Barge, D. Zoll, S. Anilturk, O., Sicurani, E. Caillat, C. Barr, A. Gonnella, R. Expinoux, Y. Mur, P. Mayet, N. Gotti, A. and Basso, M. T. Microelectronics Engineering, 84, 25282532, (2007).Google Scholar
2 Smith, S. Hopstaken, M. Pantel, R. Collins, J. Wilcox, J. Basso, M.-T., Kelber, J. and Braeckelmann, G., Proceedings Abstracts for the 2005 Advanced Metallization Conference,(Colorado Spring, Denver, 2005)Google Scholar
3 Hsu, P. F. Tsai, M. H. Shieh, J. Tao, H. J. and Liang, M. S. Proceedings of the 11thh IPFA Conf. (Japan), 199-200 (2004).Google Scholar
4 Sakamori, S. Yonekura, K. Fujiwara, N. Kosaka, T. Ohkuni, M. and Tateiwa, K. Thin Solid Films, 515, 49334936 (2007).Google Scholar
5 Manandhar, S. Copp, B. and Kelber, J. A. submitted for publication, (2007)Google Scholar
6 Chang, Y.-L. Chen, Y.-W., Cheng, Y.-C., Shinh, K. Huang, C. and Tzou, S. F. IEEE, CNF, 99-101 (2007).Google Scholar
7 Wilks, J. A. Magtoto, N. P. Kelber, J. A. and Arunachalam, V. Applied Surface Science, 253, 61766184 (2007).Google Scholar
8 Powell, C. J. and Jablonski, A. .NIST Electron Effective-Attenuation-Length Database, version 1.1.,. www.nist.gov (2003).Google Scholar
9 Briggs, D. and Seah, M. P. Practical Surface Analysis, Vol. one, second edition ed. (J. Wiley and Sons, New York, 1990).Google Scholar
10 Moulder, J. F. Stickle, W. F. Sobol, P. E. and Bomben, K. D. Handbook of X-ray Photoelectron Spectroscopy (Physical Electronics, Eden Prairie, Minnesota, 1995).Google Scholar
11 Cechal, J. and Sikola, T. Surface Science, 600, 47174722 (2006).Google Scholar
12. Ogawa, Hiroki, Unangisawa, Michihiko, Ichiki, Takanori, and Horiike, Yasuhrio, Jap. J. Appl. Phys. 41, 5349–58 (2002).Google Scholar