Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T15:54:06.788Z Has data issue: false hasContentIssue false

Oxidation Behavior of Intermetallic Titanium Aluminide Alloys

Published online by Cambridge University Press:  21 December 2012

Michael Schütze
Affiliation:
Dechema-Forschungsinstitut, Theodor-Heuss-Allee 25, 60486 Frankfurt am Main, Germany
Simone Friedle
Affiliation:
Dechema-Forschungsinstitut, Theodor-Heuss-Allee 25, 60486 Frankfurt am Main, Germany
Get access

Abstract

Above 750-800°C oxidation becomes a serious life time issue for the new group of intermetallic light-weight high temperature alloys based on titanium aluminides (TiAl). Fast growing titanium oxide competes with protective alumina as a surface scale in the oxidation reaction by which the formation of a slow-growing protective oxide scale is prevented. The key to the development of alloys with sufficient oxidation resistance is the understanding of the thermodynamic and kinetic situation during the oxidation process. The latter is influenced by the type of alloying elements, the Al- and Ti-activities in the alloy, the oxidation temperature and the environment (e.g. dry or humid air, etc.). This paper provides a comprehensive summary of the oxidation mechanisms and the parameters influencing oxide scale formation. Besides the role of metallic alloying elements, the halogen effect will also be discussed. The paper finishes with recent results concerning the prevention of oxidation-induced room temperature embrittlement of TiAl alloys.

Type
Articles
Copyright
Copyright © Materials Research Society 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Choudhury, N. S., Graham, H. C. and Hinze, J. W., in Properties of High Temperature Alloys, edited by Foroulis, Z. A. and Pettit, F. S. (Electrochemical Society, 1976) pp. 668680.Google Scholar
Lee, E. U. and Waldman, J., Scr. Metall., 22, 1389 (1988).10.1016/S0036-9748(88)80006-1CrossRefGoogle Scholar
Becker, S., Rahmel, A., Schorr, M. and Schütze, M., Oxid. Met., 38, 425 (1992).CrossRefGoogle Scholar
Goward, G. W., Surf. Coat. Technol., 108-109, 73 (1998).10.1016/S0257-8972(98)00667-7CrossRefGoogle Scholar
Shida, Y. and Anada, H., Mat. Trans., 35, 623 (1994).Google Scholar
Shida, Y. and Anada, H., Oxid. Met., 45, 197 (1996).10.1007/BF01046826CrossRefGoogle Scholar
Appel, F., Paul, J. D. H. and Oehring, M., in Gamma Titanium Aluminide Alloys, edited by Wiley VCH, 2012) pp. 729738.Google Scholar
Kofstad, P., in High Temperature Corrosion (Elsevier, 1988)Google Scholar
Meier, G. H. and Pettit, F. S., Mater. Sci. Eng. A, 153, 548 (1992).10.1016/0921-5093(92)90250-5CrossRefGoogle Scholar
Zheng, N., Quadakkers, W. J., Gil, A. and Nickel, H., Oxid. Met., 44, 477 (1995).CrossRefGoogle Scholar
Przybilla, W. and Schütze, M., Oxid. Met., 58, 337 (2002).CrossRefGoogle Scholar
Rahmel, A. and Spencer, P. J., Oxid. Met., 35, 53 (1991).10.1007/BF00666500CrossRefGoogle Scholar
Schütze, M. and Fellmann, H., Corrosion-Deformation Interactions, edited by Magnin, T. and Gras, J. M. (1992) pp. 565576.Google Scholar
Taniguchi, S., Hongawara, N. and Shibata, T., Mater. Sci. Eng. A, 307, 107 (2001).10.1016/S0921-5093(00)01967-5CrossRefGoogle Scholar
Zeller, A., Dettenwanger, F. and Schütze, M., Intermetallics, 10, 59 (2002).10.1016/S0966-9795(01)00104-2CrossRefGoogle Scholar
Zeller, A., Dettenwanger, F. and Schütze, M., Intermetallics, 10, 33 (2002).CrossRefGoogle Scholar
Kremer, R. and Auer, W., Mater. Corros., 48, 35 (1997).10.1002/maco.19970480107CrossRefGoogle Scholar
Brady, M. P., Pint, B. A., Tortorelli, P. F., Wright, I. G. and Hanrahan , R. J. Jr., in Materials Science and Technology: Corrosion and Environmental Degradation, Volumes I+II, edited by Cahn, R. W., Haasen, P., and Kramer, E. J. (Wiley-VCH, 2012) pp. 232325.Google Scholar
Quadakkers, W. J., Schaaf, P., Zheng, N., Gil, A. and Wallura, E., Mater. Corros., 48, 28 (1997).Google Scholar
Nickel, H., Zheng, N., Elschner, A. and Quadakkers, W. J., Mikrochim. Acta, 119, 23 (1995).10.1007/BF01244851CrossRefGoogle Scholar
Stroosnijder, M. F., Zheng, N., Quadakkers, W. J., Hofmann, R., Gil, A. and Lanza, F., Oxid. Met., 46, 19 (1996).CrossRefGoogle Scholar
Schmitz-Niederau, M. and Schütze, M., Oxid. Met., 52, 225 (1999).CrossRefGoogle Scholar
Fergus, J. W., Mater. Sci. Eng. A, 338, 108 (2002).10.1016/S0921-5093(02)00064-3CrossRefGoogle Scholar
Schumacher, G., Dettenwanger, F., Schütze, M., Hornauer, U., Richter, E., Wieser, E. and Möller, W., Intermetallics, 7, 1113 (1999).CrossRefGoogle Scholar
Schumacher, G., Dettenwanger, F., Hald, M., Lang, C. and Schütze, M., in The microalloying effect in the oxidation of TiAl-alloys (Utrecht, 1998)Google Scholar
Donchev, A., Schütze, M., Yankov, R., Kolitsch, A. and Möller, W., in Structural Aluminides for Elevated Temperatures: Proceedings of the TMS Annual Meeting 2008, edited by Kim, Y. W., Morris, D., Yang, R., and Leyens, C. (TMS, 2008) pp. 323332.Google Scholar
Donchev, A., Richter, E., Schütze, M. and Yankov, R., J. Alloys Compd., 452, 7 (2008).10.1016/j.jallcom.2006.12.157CrossRefGoogle Scholar
Donchev, A., Masset, P. and Schütze, M., Mater. Res. Soc. Symp. Proc., 1128, 159 (2009).Google Scholar
Taniguchi, S., Mater. Corros., 48, 1 (1997).CrossRefGoogle Scholar
Kumagai, M., Shibue, K., Kim, M.-S. and Yonemitsu, M., Intermetallics, 4, 557 (1996).10.1016/0966-9795(96)00043-XCrossRefGoogle Scholar
Schumacher, G., Dettenwanger, F. and Schütze, M., Mater. High Temp., 17, 53 (2000).10.1179/mht.2000.010CrossRefGoogle Scholar
Zschau, H.-E., Gauthier, V., Schumacher, G., Dettenwanger, F., Schütze, M., Baumann, H., Bethge, K. and Graham, M., Oxid. Met., 59, 183 (2002).10.1023/A:1023030302118CrossRefGoogle Scholar
Donchev, A., Gleeson, B. and Schütze, M., Intermetallics, 11, 387 (2003).10.1016/S0966-9795(03)00003-7CrossRefGoogle Scholar
Maurice, V., Despert, G., Zanna, S., Bacos, M.-P. and Marcus, P., Nat. Mater., 3, 687 (2004).10.1038/nmat1203CrossRefGoogle Scholar
Rahmel, A., Quadakkers, W. J. and Schütze, M., Mater. Corros., 46, 271 (1995).10.1002/maco.19950460503CrossRefGoogle Scholar
Draper, S., Lerch, B. A., Locci, I. E., Shazly, M. and Prakash, V., Intermetallics, 13, 1014 (2005).10.1016/j.intermet.2004.12.015CrossRefGoogle Scholar
Wu, X., Huang, A., Hu, D. and Loretto, M. H., Intermetallics, 17, 540 (2009).10.1016/j.intermet.2009.01.010CrossRefGoogle Scholar
Ralison, A., Dettenwanger, F. and Schütze, M., in Proceedings of the Fifth International Conference on the Microscopy of Oxidation, edited by Newcomb, S. B. and Tatlock, G. (2003) pp. 361383.Google Scholar
Menand, A., Huguet, A. and Nérac-Partaix, A., Acta Mater., 44, 4729 (1996).10.1016/S1359-6454(96)00111-5CrossRefGoogle Scholar
Bortolotto, L., Galetz, M., Masset, P. J. and Schütze, M., 8th International Symposium on High-Temperature Corrosion and Protection of Materials (France, 2012) in press.Google Scholar