Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-28T17:18:57.705Z Has data issue: false hasContentIssue false

The Outlook for Diamond in Raman Laser Applications

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Efficient and practical Raman lasers based on single crystal diamond are now realizable owing to the availability of optical quality crystals grown by chemical vapour deposition. In this paper, the performance characteristics of diamond Raman lasers is summarized and the results compared to other materials. The outlook for diamond Raman lasers is discussed and key challenges for material development highlighted.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Rand, S.C. and DeShazer, L.G., Opt. Lett. 10, 481 (1985).Google Scholar
2 John, P., Science 292, 18471848 (2001).Google Scholar
3Patent: K. Jamison and H. Schmidt, “Doped diamond laser,” US Patent No. 5,504,767 (1996).Google Scholar
4 Penzkofer, A., Laubereau, A., and Kaiser, W., Progress in Quantum Electronics 6, 55140 (1979).Google Scholar
5 Pask, H. M., Prog. Quantum Electron. 27, 3 (2003).Google Scholar
6 Murray, J. T., Austin, W. L., and Powell, R. C., Opt. Mater. 11, 353 (1999).Google Scholar
7 Cerny, P., Jelinkova, H., Zverev, P. G., and Basiev, T. T., Prog. Quantum Electron. 28, 11 (2004); T. T. Basiev, A. A. Sobol, P. G. Zverev, L. I. Ivleva, V. V. Osiko, and R. C. Powell, Opt. Mater., 11, 307, (1999); T. T. Basiev and R. C. Powell, in Handbook of Laser Technology and Applications, C. E. Webb et al., Ed. London, U.K.: Inst. Phys., 2003, ch. B1.7, pp. 469-497.Google Scholar
8 Pask, H. M., Dekker, P., Mildren, R. P., Spence, D. J., and Piper, J. A., Prog. Quantum Electron. 32, 121 (2008).Google Scholar
9 Grabtchikov, A.S., Lisinetskii, V.A., Orlovich, V.A., Schmitt, M., Maksimenka, R., and Kiefer, W., Opt. Lett. 29, 2524, (2004).Google Scholar
10 Lee, A. J., Pask, H. M., Dekker, P., and Piper, J. A., Opt. Express 16, 21958 (2008).Google Scholar
11 Rhee, H., Riesbeck, T., Kallmeyer, F., Strohmaier, S., Eichler, H. J., Treichel, R. and Petermann, K., Proc. SPIE, 6103, 610308 (2006).Google Scholar
12 Taylor, L., Feng, Y., and Calia, D. Bonaccini, Opt. Express 17, 14687 (2009).Google Scholar
13 Klein, C.A., Proc. SPIE 2428, 517 (1994)Google Scholar
14 Ramaswamy, C., Indian J. Phys. 5, 97 (1930).Google Scholar
15 Eckhardt, G., Bortfeld, D. P., and Geller, M., Appl. Phys. Lett. 3, 137, (1963).Google Scholar
16 McQuillan, A.K., Clements, W.R.L. and Stoicheff, B.P., Phys. Rev. A 1, 628 (1970).Google Scholar
17 Kaminskii, A. A., Hemley, R. J., Lai, J., Yan, C. S., Mao, H. K., Ralchenko, V. G., Eichler, H. J., and Rhee, H., Laser Phys. Lett. 4, 350 (2007).Google Scholar
18 Demidovich, A.A., Grabtchikov, A.S., Orlovich, V. A, Danailov, M. B and Kiefer, W., in Conf. Dig. Lasers and Electro-Optics Europe, (Optical Society of America, Washington DC, 2005) pp. 251.Google Scholar
19 Friel, I., Clewes, S.L., Dhillon, H.K., Perkins, N., Twitchen, D.J., Scarsbrook, G.A., Diamond and Related Materials, 18, 808815, (2009)Journal article: 1. S.W. Bonner and P. Wynblatt, J. Mater. Res. 1, 646 (1986).Google Scholar
20 Turri, G., Chen, Y., Bass, M., Orchard, D., Butler, J.E., Magana, S., Feygelson, T., Thiel, D., Fourspring, K., Dewees, R.V., Bennett, J.M., Pentony, J., Hawkins, S., Baronowski, M., Guenthner, A., Seltzer, M.D., Harris, D.C. and Stickley, C.M., Opt. Eng. 46, 064002, (2007).Google Scholar
21 Mildren, R.P., Rabeau, J.R., Butler, J.E., Opt. Express, 16, 18950 (2008).Google Scholar
22 Mildren, R.P. and Sabella, A., Opt. Lett. 34, 2811 (2009).Google Scholar
23 Gardiner, D.J., Graves, P.R., Bowley, H.J., Practical Raman Spectroscopy, (Springer-Verlag, 1989) p. 24 Google Scholar