Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-28T05:37:13.702Z Has data issue: false hasContentIssue false

The origin of predominance of cementite among iron carbides in steel at elevated temperature

Published online by Cambridge University Press:  22 September 2011

C.M. Fang
Affiliation:
Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands. Materials innovation institute (M2i), Mekelweg 2, 2628 CD Delft, The Netherlands.
M.H.F. Sluiter
Affiliation:
Department of Materials Science and Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands.
M.A. van Huis
Affiliation:
Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands. EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
C.K. Ande
Affiliation:
Materials innovation institute (M2i), Mekelweg 2, 2628 CD Delft, The Netherlands. Department of Materials Science and Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands.
H.W. Zandbergen
Affiliation:
Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands.
Get access

Abstract

A systematic first-principles study was conducted on the stability of binary iron carbides. The calculations showed that all the binary iron carbides are unstable relative to the elemental solids (α-Fe and graphite). Apart from a cubic Fe23C6 phase, the energetically most favorable carbides exhibit hexagonal close-packed (hcp) Fesublattices. Structural relaxation of the hcp iron carbides was analyzed and discussed together with their relative thermodynamically stability. Finite-temperature analysis showed that contributions from lattice vibration and anomalous magnetic ordering (Curie-Weiss behavior), rather than from the conventional lattice mismatch with the matrix, are the origin of the high stability and predominance of cementite among the iron carbides in steels.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hofer, L. J. E., Cohn, E. M., Nature, 167, 977 (1951).Google Scholar
2. Christian, J. W., The theory of transformations in metals and alloys, Pergamon Press, Amsterdam/Boston/London/New York/Oxford/Paris/San Diego/San Francisco/Singapore/Sydney/Tokyo, (2002).Google Scholar
3. Morris, J. W. Jr., Science, 320, 1022 (2008).Google Scholar
4. Umemoto, M., Liu, Z. G., Matsuyama, K., Tsuchiya, K., Scripta Mater. 45, 391 (2001).Google Scholar
5. Audier, M., Bowen, P., Jones, W., J. Crystal Growth, 64, 291 (1983).Google Scholar
6. Kimura, Y., Inoue, T. Yin, F. X. and Tsuzaki, K., Science, 320, 1057 (2008).Google Scholar
7. Vitos, L., Korzhavyi, P. A. and Johansson, B., Nature Materials, 2, 25(2003).Google Scholar
8. Goldschmidt, H. J., J. Iron Steel Inst. 160A, 345 (1948).Google Scholar
9. Nagakura, S., Oketani, S., Transactions ISIJ, 8, 265 (1968).Google Scholar
10. Scott, E. R. D., Nature, 229, 61 (1971).Google Scholar
11. Fang, C.M., van Huis, M.A., and Zandbergen, H.W., Phys. Rev. B 90, 224108 (2009).Google Scholar
12. Fang, C.M., van Huis, M.A., Sluiter, M.H.F., Zandbergen, H.W., Acta Mater., 58, 2968 (2010).Google Scholar
13. Fang, C.M., van Huis, M.A., and Zandbergen, H.W., Scripta Mater., 63, 418 (2010).Google Scholar
14. Fang, C.M., Sluiter, M.H.F., van Huis, M.A., Ande, C. K., Zandbergen, H.W., Phys. Rev. Lett., 105, 055503 (2010).Google Scholar
15. Fang, C.M., van Huis, M.A., and Zandbergen, H.W., Scripta Mate., 64, 296 (2011).Google Scholar
16. Zener, C., J. Appl. Phys. 22, 372 (1955).Google Scholar
17. Chuang, Y. Y., Schmid, R., Chang, Y. A., Metal. Transaction A 16, 153 (1985).Google Scholar
18. Fang, C. M., Loong, C.-K., de Wijs, G. A. and de With, G., Phys. Rev. B 66, 144301 (2002).Google Scholar
19. Kresse, G., and Hafner, J., Phys. Rev. B 47, 558 (1993); G. Kresse, and J. Furthmueller, Comput. Mat. Sci. 6, 15 (1996).Google Scholar
20. Blöchl, P. E., Phys. Rev. B 50, 17953 (1994).Google Scholar
21. Kresse, G., and Furthmüller, J., Phys. Rev. B 54, 1758 (1999).Google Scholar
22. Perdew, J. P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett., 77, 3865 (1996).Google Scholar
23. Monkhorst, H. J. and Pack, J. D., Phys. Rev. B 13, 5188 (1976).Google Scholar
24. Jack, K. H., Proc. Roy. Soc.. (London) A 195, 56 (1948).Google Scholar