Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T02:34:34.321Z Has data issue: false hasContentIssue false

Oriented Carbon Pair Defects Stabilized by Hydrogen in as-Grown GaAs Epitaxial Layers

Published online by Cambridge University Press:  22 February 2011

Y.M. Cheng
Affiliation:
Physics Department, Lehigh University, Bethlehem, Pennsylvania 18015
M. Stavola
Affiliation:
Physics Department, Lehigh University, Bethlehem, Pennsylvania 18015
C.R. Abernathy
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
S.J. Pearton
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
Get access

Abstract

We have studied the IR absorption of heavily carbon doped GaAs grown by metalorganic molecular beam epitaxy. A striking observation is that the hydrogen-stretching vibration of a Crelated complex at 2688 cm−1 is strongly polarized along just one of the <110> directions in the (001) growth plane. This polarized C-H vibration is assigned to a defect complex that is aligned at the growth surface and then maintains its alignment as it is incorporated into the growing crystal. In a series of experiments, we have studied the annealing of the 2688 cm−1 band and its alignment and suggest that the defect complex consists of a CAs-CAs pair stabilized by hydrogen.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Clerjaud, B., Gendron, F., Krause, M., and Ulrici, W., Phys. Rev. Lett. 65, 1800 (1990).Google Scholar
2. Kozuch, D.M., Stavola, M., Pearton, S.J., Abernathy, C.R., and Lopata, J., Appl. Phys. Lett. 57, 2561 (1990).Google Scholar
3. Kozuch, D.M., Stavola, M., Pearton, S.J., Abernathy, C.R., and Hobson, W.S., J. Appl. Phys. 73, 3716 (1993).Google Scholar
4. Stavola, M., Kozuch, D.M., Abernathy, C.R. and Hobson, W.S., Advanced III-V Compound Semiconductor Growth, Processing and Devices, edited by Pearton, S.J., Sadana, D.K., and Zavada, J.M., (MRS, Pittsburgh, 1992), p. 75.Google Scholar
5. Woodhouse, K., Newman, R., Nicklin, R. and Bradley, R., J. Cryst. Growth 120, 323 (1992).Google Scholar
6. Wagner, J., Maier, M., Lauterbach, Th., Bachem, K.H., Ashwin, M., Newman, R.C., Woodhouse, K., Nicklin, R., and Bradley, R.R., Appl. Phys. Lett. 60, 2546 (1992).CrossRefGoogle Scholar
7. Woodhouse, K., Newman, R.C., Lyon, T.J. de, Woodall, J.M., Scilla, G.J., and Cordone, F., Semicond. Sci. Technol. 6, 330 (1991).CrossRefGoogle Scholar
8. Watanabe, K. and Yamazaki, H., J. Appl. Phys., to be published.Google Scholar
9. Rahbi, R., Pajot, B., Chevallier, J., Marbeuf, A., Logan, R.C., and Gavand, M., J. Appl. Phys. 73, 1723 (1993).CrossRefGoogle Scholar
10. Wagner, J., Maier, M., Lauterbach, Th., Bachem, K.H., Fischer, A., Ploog, K., Mörsch, G. and Kamp, M., Phys. Rev. B 45, 9120 (1992).Google Scholar
11. Abernathy, C.R., Pearton, S.J., Ren, F., Hobson, W.S., Fullowan, T.R., Katz, A., Jordon, A.S., and Kovalchick, J., J. Cryst. Growth 105, 375 (1990).Google Scholar
12. Skolnick, M.S., Halliday, D.P., and Tu, C.W., Phys. Rev. B 38, 4165 (1988) and the references contained therein.Google Scholar
13. Charbonneau, S. and Thewalt, M.L.W., Phys. Rev. B 41, 8221 (1990) and the references contained therein.Google Scholar
14. Eaves, L. and Halliday, D.P., J. Phys. C: Solid State Phys. 17, L705 (1984).Google Scholar
15. Skolnick, M.S., Harris, T.D., Tu, C.W., Brennan, T.M., and Sturge, M.D., Appl. Phys. Lett. 46, 427 (1985).Google Scholar
16. Cheng, Y., Stavola, M., Abernathy, C.R., Pearton, S.J., and Hobson, W.S., Phys. Rev. B (to be published)Google Scholar