Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T15:39:49.982Z Has data issue: false hasContentIssue false

Order-disorder transition in the Cd-Ca cubic approximant

Published online by Cambridge University Press:  01 February 2011

M. Widom
Affiliation:
Department of Physics, Carnegie Mellon University, Pittsburgh, PA15213
M. Mihalkovič
Affiliation:
also at:Institute of Physics, Slovak Academy of Sciences, 84228 Bratislava, Slovakia
Get access

Abstract

Recent experiments discovered an order-disorder transition occuring at low temperatures in large unit 1/1 cell cubic approximants of the stable Cd-based binary alloy quasicrystals. The transition is related to correlations among orientational degrees of freedom whose separations are around 12 Å. We analyze the interactions between the degrees of freedom using ab-initio calculations for Cd-Ca alloys and derive an equivalent antiferromagnetic Ising model which shows a similar phase transition. However, the calculated transition temperature is higher than observed experimentally, indicating that the actual structure and its order-disorder transition are more complex than originally proposed. A side-benefit of our study is the discovery of a canonical-cell decoration model for the Cd-Ca icosahedral phase.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tsai, A. P., Guo, J. Q. et al., Nature, 408, 537, (2000).Google Scholar
2. Guo, J. Q. and Abe, E. and Tsai, A. P., Phys. Rev. B, 62, R14605, (2000).Google Scholar
3. Jiang, J. Z. and Jensen, C. H. and Rasmussen, A. R. and Gerward, L., Appl. Phys. Lett., 78, 1856, (2001).Google Scholar
4. Villars, P. Pearson's Handbook, Desk Edition (ASM Int., Materials Park, Ohio, 1997).Google Scholar
5. Massalski, T. B. et al. eds. Binary Alloy Phase Diagrams (ASM Int., Materials Park, Ohio, 1990).Google Scholar
6. Palenzona, A., J. Less-Common Metals, 25, 367, (1971).Google Scholar
7. Bruzzone, G., G. Chim. Ital., 102, 234, (1972).Google Scholar
8. Takakura, H., Guo, J. and Tsai, A. P., Phil. Mag. Lett., 81, 411, (2001).Google Scholar
9. Ishii, Y. and Fujiwara, T., Phys. Rev. Lett., 87, 206408, (2001).Google Scholar
10. Tamura, R., Edagawa, K. et al., J. Non-cryst. Solids (to appear, 2004).Google Scholar
11. Gomez, C. P. and Lidin, S., Phys. Rev. B, 68, 024203, (2003).Google Scholar
12. Tamura, R., Murao, Y., et al., Jpn. J. Appl. Phys., 41, L524, (2002).Google Scholar
13. Tamura, R., Edagawa, K., et al., Phys. Rev. B, 63, 132204 (2003).Google Scholar
14. Kresse, G. and Hafner, J., Phys. Rev. B, 47, RC558, (1993).Google Scholar
15. Kresse, G. and Furthmuller, J., Phys. Rev. B, 54, 11169, (1996).Google Scholar
16. Kresse, G. and Hafner, J., J. Phys. Condens. Matter 6, 8245 (1994)Google Scholar
17. Kresse, G. and Joubert, J., Phys. Rev. B, 59, 1758, (1999).Google Scholar
18. Henley, C. L., Phys. Rev. B, 43, 993, (1991).Google Scholar
19. Gomez, P. C. and Liden, S., preprint (2002).Google Scholar