Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-24T13:40:56.906Z Has data issue: false hasContentIssue false

Optoelectronic properties of graphene-MoS2 hybrid

Published online by Cambridge University Press:  10 April 2013

Medini Padmanabhan
Affiliation:
Department of Physics, Indian Institute of Science, Bangalore, India 560012
Kallol Roy
Affiliation:
Department of Physics, Indian Institute of Science, Bangalore, India 560012
Srijit Goswami
Affiliation:
Department of Physics, Indian Institute of Science, Bangalore, India 560012
T. Phanindra Sai
Affiliation:
Department of Physics, Indian Institute of Science, Bangalore, India 560012
Gopalakrishnan Ramalingam
Affiliation:
Materials Research Center, Indian Institute of Science, Bangalore, India 560012
Sanjeev Kaushal
Affiliation:
Tokyo Electron Ltd., Akasaka Biz Tower, 3-1 Akasaka 5-Chome, Minato-ku, Tokyo, Japan, 107-6325
Srinivasan Raghavan
Affiliation:
Materials Research Center, Indian Institute of Science, Bangalore, India 560012
Arindam Ghosh
Affiliation:
Department of Physics, Indian Institute of Science, Bangalore, India 560012
Get access

Abstract

Ultra-thin flakes of layered materials have recently been attracting widespread research interest due to their exotic properties. In this work, we study the optoelectronic response of a hybrid of two such materials – graphene and MoS2. Our devices consist of mechanically exfoliated graphene flakes transferred on top of similarly exfoliated MoS2. The electrical response of the hybrid is studied in the presence of white light. We show that the four-point resistance of graphene is modulated in the presence of light. This effect is observed to be a strong function of gate voltage. We have also extended our studies to CVD (chemical vapor deposition) - grown graphene transferred onto MoS2 which show qualitatively similar features, thereby attesting to the scalability of the device architecture.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Coleman, J. N., et al. ., Science 331, 568 (2011).CrossRefGoogle Scholar
Novoselov, K. S., Fal’ko, V. I., Colombo, L., Gellert, P. R., Schwab, M. G., and Kim, K., Nature 490, 192 (2012).CrossRefGoogle Scholar
Mak, K. F., Lee, C., Hone, J., Shan, J., and Heinz, T. F., Phys. Rev. Lett. 105, 136805 (2010).CrossRefGoogle Scholar
Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., and Kis, A., Nat Nanotechnol. 6, 147 (2011).CrossRefGoogle Scholar
Ghatak, S., Pal, A. N., and Ghosh, A., ACS Nano 5, 7707 (2011).CrossRefGoogle Scholar
Dean, C.., Young, A. F.., Merci, I., Lee, C., Wang, L., Sorgenfrei, S., Watanabe, K., Taniguchi, T., Kim, P., Shepard, K. L., and Hone, J., Nature Nanotechnol. 5, 722 (2010).CrossRefGoogle Scholar
Das Sarma, S., Adam, S., Hwang, E. H., and Rossi, E., Rev. Mod. Phys. 83, 407 (2011).CrossRefGoogle Scholar
Nair, R. R., Blake, P., Grigorenko, A. N., Novoselov, K. S., Booth, T. J., Stauber, T., Peres, N. M. R., and Geim, A. K., Science 320, 1308 (2008)CrossRefGoogle Scholar
George, P. A., Strait, J., Dawlaty, J., Shivaraman, S., Chandrashekhar, M., Rana, F., and Spencer, M. G., Nano Lett. 8, 4248 (2008)CrossRefGoogle Scholar
Xia, F., Mueller, T., Lin, Y.-m., Valdes-Garcia, A., and Avouris, P., Nature Nanotechnol. 4, 839 (2009).CrossRefGoogle Scholar
Konstantatos, G., Badioli, M., Gaudreau, L., Osmond, J., Bernechea, M., de Arquer, F. P. G., Gatti, F., and Koppens, F. H. L., Nature Nanotechnol. 7, 363 (2012).CrossRefGoogle Scholar
Kim, M., Safron, N. S., Huang, C., Arnold, M. S., and Gopalan, P., Nano Lett. 12, 182 (2012).CrossRefGoogle Scholar
Zomer, P. J., Dash, S. P., Tombros, N., and van Wees, B. J., Appl. Phys. Lett. 99, 232104 (2011).CrossRefGoogle Scholar
Ferrari, A. C., Meyer, J. C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K. S., Roth, S., and Geim, A. K., Phys. Rev. Lett. 97, 187401 (2006).CrossRefGoogle Scholar
Yin, Z., Li, H., Li, H., Jiang, L., Shi, Y., Sun, Y., Lu, G., Zhang, Q., Chen, X., and Zhang, H., ACS Nano 6, 74 (2012).CrossRefGoogle Scholar
Choi, W., Cho, M. Y., Konar, A., Lee, J. H., Cha, G.-B., Hong, S. C., Kim, S., Kim, J., Jena, D., Joo, J., et al. ., Advanced Materials 24, 5832 (2012).CrossRefGoogle Scholar
Mattevi, C., Kim, H., and Chhowalla, M., J. Mater. Chem. 21, 3324 (2011).CrossRefGoogle Scholar