Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-02T23:34:26.773Z Has data issue: false hasContentIssue false

Optoelectronic Device Applications of Self-Organized In(Ga,Al)As/Ga(Al)As Quantum Dots

Published online by Cambridge University Press:  10 February 2011

P. Bhatiacharya
Affiliation:
Solid State Electronics Laboratory, Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109-2122, [email protected]
S. Krishna
Affiliation:
Solid State Electronics Laboratory, Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109-2122, [email protected]
D. Zhu
Affiliation:
Solid State Electronics Laboratory, Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109-2122, [email protected]
J. Phillips
Affiliation:
Solid State Electronics Laboratory, Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109-2122, [email protected]
D. Klotzkin
Affiliation:
Solid State Electronics Laboratory, Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109-2122, [email protected]
O. Qasaimeh
Affiliation:
Solid State Electronics Laboratory, Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109-2122, [email protected]
W. D. Zhou
Affiliation:
Solid State Electronics Laboratory, Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109-2122, [email protected]
J. Singh
Affiliation:
Solid State Electronics Laboratory, Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109-2122, [email protected]
P. J. Mccann
Affiliation:
School of Electrical and Computer Engineering, Laboratory for Electronic Properties of Materials, University of Oklahoma, Norman, OK 73019-1023
K. Namjou
Affiliation:
School of Electrical and Computer Engineering, Laboratory for Electronic Properties of Materials, University of Oklahoma, Norman, OK 73019-1023
Get access

Abstract

Self-organized growth of strained semiconductor heterostructures has enabled the realization of ordered arrays of quantum dots that can be incorporated into the active region of electronic and optoelectronic devices. Highly uniform In(Ga)As/Ga(Al)As with greatly reduced photoluminescence linewidths (FWHM=19 meV, T=17K) have been grown and characterized. Various aspects of carrier dynamics in these dots, such as measurement of carrier relaxation times and the modulation bandwidths of quantum dot lasers, estimation of the tunneling time in vertically coupled dots along with tuning of the intersubband electronic energy levels have also been studied. The favorable relaxation times can be exploited to realize far infrared emission and detection based on intersubband transitions in the dots. The optoelectronic properties of the dots and the dynamics of carriers therein are also extremely attractive for high-speed wavelength switching and the design of electro-optic modulators. The electro-optic coefficients in the quantum dots have been measured and the linear E-O coefficient, r1 =2.6 ×10−11m/V, is found to be comparable to that in LiNbO3

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Kristaedter, N., Ledenstov, N.N., Grundmann, M., Bimberg, D., Ustinov, V.M., Ruvimov, S.S., Maximov, M.V., Kop'ev, P.S., Alferov, Zh. I., Richter, U., Werner, P., Gosele, U., and Heidenreich, J., Electron. Lett. 30, p. 1416 (1994).Google Scholar
2 Leonard, D., Krishnamurthy, M., Reaves, C. M., Denbaars, S. P. and Petroff, P. M., Appl. Phys. Lett., 63, p. 3202, (1993).Google Scholar
3 Shoji, H., Mukai, K., Ohtsuka, N., Sugawara, M., Uchida, T., and Ishikawa, H., Abstracts of Intern. Semic. Laser Conf., (Haifa) (1996).Google Scholar
4 Tabuchi, M., Noda, S., and Sasaki, A., Science and Technology of Mesoscopic Structures, edited by Namba, S., Hamaguchi, C. and Ando, T. (Springer, Tokyo, 1992) p. 379.Google Scholar
5 Jiang, H. and Singh, J., Phys. Rev. B, 56, p. 4696, (1996).Google Scholar
6 Jiang, H. and Singh, J., IEEE J. of Quant. Elect., 34, p. 1188 (1999).Google Scholar
7 Riberio, G. M., Leonard, D., and Petroff, P. M., Appl. Phys. Lett., 66, p. 1767 (1995).Google Scholar
8 Phillips, J. and Bhattacharya, P. Venkateswaran, U., Appl. Phys. Lett., 74, p. 1549 (1999).Google Scholar
9 Park, G., Shchekin, O.B., Csutak, S., Huffaker, D.L., and Deppe, D.G., Appl. Phys. Lett., 75, p. 3267, (1999).Google Scholar
10 Sosnowski, T. Norris, T., Jiang, H., Singh, J., Kamath, K. and Bhattacharya, P., Phys. Rev. B, 57, p. R942326 (1998).Google Scholar
11 Kamath, K., Phillips, J., Jiang, H., Singh, J., and Bhattacharya, P., Appl. Phys. Lett., 70, p. 2952, (1997).Google Scholar
12 Kamath, K., Bhattacharya, P., Sosnowski, T., Phillips, J. and Norris, T., Electron. Lett., 30, p. 1374 (1996).Google Scholar
13 Mirin, R., Gossard, A. and Bowers, J., Electronic Lett., 32, p. 1372 (1996)Google Scholar
14 Klotzkin, D., Kamath, K., and Bhattacharya, P., IEEE Photon. Technol. Lett., 9, p. 1301 (1997).Google Scholar
15 Phillips, J., Bhattacharya, P., Kennerly, S.W., Beekman, D.W. and Dutta, M., IEEE J. of Quant. Elect., 35, p. 936 (1999).Google Scholar
16 Pan, D., Towe, E., and Kennerly, S., Appl. Phys. Lett., 73, p. 1937 (1998).Google Scholar
17 Qasaimeh, O., Kamath, K., Bhattacharya, P. and Phillips, J., Appl. Phys. Lett., 72, p. 1275, (1998).Google Scholar
18 Phillips, J., Kamath, K., Brock, T., and Bhattacharya, P., Appl. Phys. Lett., 72, p. 3509, (1998).Google Scholar
19 Arakawa, Y. and Sakaki, H., Appl. Phys. Lett. 40, p. 939 (1982).Google Scholar
20 Kuramochi, E., Temmyo, J., Tamamura, T., and Kamada, H., Appl. Phys. Lett., 71, p. 1655 (1997).Google Scholar
21 Kamath, K., Chervala, N., Linder, K.K., Sosnowski, T., Jiang, H-T., Norris, T., Singh, J., and Bhattacharya, P., Appl. Phys. Lett., 71, p. 927 (1997).Google Scholar
22 Solomon, G. S., Komarov, S., Harris, J. S. Jr., and Yamamoto, Y., J. Cryst. Growth, 175/176, p. 707 (1997).Google Scholar
23 Krishna, S., Linder, K., and Bhattacharya, P., J. Appl. Phys., 86, p. 4691, (1999).Google Scholar
24 Krishna, S., Sabarinathan, J., Linder, K., Bhattacharya, P., Lita, B. and Goldman, R.S., J. Vac. Sci. Tech. B (in press).Google Scholar
25 Nishi, K., Saito, H., Sugou, S. and Lee, J-S., Appl. Phys. Lett., 74, p. 1111 (1999).Google Scholar
26 Krishna, S., Zhu, D., Xu, J., Linda, K. K., Qasaimeh, O., Bhattacharya, P. and Huffaker, D. L., J. Appl. Phys., 86, p. 6135 (1999).Google Scholar
27 Bockelman, U. and Egeler, T., Phys. Rev. B.,46, p. 15574 (1992).Google Scholar
28 Vurgaftman, I., Lam, Y. and Singh, J., IEEE J. Quant. Electron., 50, p. 14309 (1994).Google Scholar
29 Bhattacharya, P., Singh, J.,Yoon, H., Zhang, X., Guitterrez-Aitkin, A., and Lam, Y., IEEE J. Quant. Electron., 32, p. 1620 (1996).Google Scholar
30 Braskén, M., Lindberg, M., Sopanen, M., Lipsanen, H., and Tulkki, J., Phys. Rev. B.,58, p. 15993 (1998).Google Scholar
31 Kirstaedter, N., Schmidt, O., Ledenstov, N., Bimberg, D., Ustinov, V., Egorov, A., Zhukov, A., Maximov, M., Ko'pev, P. and Alferov, Zh., Appl. Phys. Lett., 69, p. 1226, (1996).Google Scholar
32 Willatzen, M., Tanaka, T., Arakawa, Y., and Singh, J., IEEE. J. Quant. Electron., 30, p. 640 (1994).Google Scholar
33 Maimon, S., Finkman, E., Bahir, G., Schacham, S.E., Garcia, J.M. and Petroff, P.M., Appl. Phys. Lett., 73, p. 2003 (1998).Google Scholar
34 Heitz, R., Veit, M., Ledenstov, N.N., Hoffmann, A., Bimberg, D., Ustinov, V.M., Ko'pev, P.S., and Alferov, Zh.I., Phys. Rev. B, 56, p. 10435, (1997).Google Scholar
35 Singh, J., IEEE Photon. Technol. Lett., 8, p. 488, (1996).Google Scholar