Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T14:16:17.777Z Has data issue: false hasContentIssue false

Optoelectronic detection of DNA molecules using an amorphous silicon photodetector

Published online by Cambridge University Press:  15 March 2011

F. Fixe
Affiliation:
INESC Microsistemas e Nanotecnologias, Lisbon, Portugal Center for Biological & Chemical Engineering, Instituto Superior Técnico, Lisbon, Portugal
D.M.F. Prazeres
Affiliation:
Center for Biological & Chemical Engineering, Instituto Superior Técnico, Lisbon, Portugal
V. Chu
Affiliation:
INESC Microsistemas e Nanotecnologias, Lisbon, Portugal
J.P. Conde
Affiliation:
INESC Microsistemas e Nanotecnologias, Lisbon, Portugal Department of Materials Engineering, Instituto Superior Técnico, Lisbon, Portugal
Get access

Abstract

This work demonstrates the use of an amorphous silicon (a-Si:H) photodetector to measure the density of covalently-bound DNA molecules tagged with a fluorescent molecule. This device is based on the photoconductivity of a-Si:H in a coplanar electrode configuration. Excitation of a fluorescently-tagged biomolecule with near UV/blue light results in the emission of visible light. The emitted light is then converted into an electrical signal in the photodetector, thus allowing the detection of the presence of the tagged DNA molecules. The design, fabrication and characterization of this integrated a-Si:H-based bio-detector is described. The detection limit of the present device is of the order of 20 pmol/cm2. A surface density of ≤ 30 pmol/cm2 for DNA covalently-bound to an active silica layer was measured with the a-Si:H-based bio-detector.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Schena, M., Shalon, D., Davis, R.W. and Brown, P.O., Science 270, 467 (1995).Google Scholar
2. Duggan, D.J., Bittner, M., Chen, Y., Meltzer, P. and Trent, J., Nature Genet. 21, 10 (1999).Google Scholar
3. Southern, E., Mir, K. and Shchepinov, M. Nature Genet., 21 (Suppl.), 5 (1999).Google Scholar
4. Ramsay, G. DNA chips: state-of-the art, Nature Biotechnol., 16, 40 (1998).Google Scholar
5. Pease, A.C., Solas, D., Sullivan, E.J., Cronin, M.T., Homes, C.P. and Fodor, S., PNAS, 91, 5022 (1994).Google Scholar
6. Marshall, A. & Hodgson, J. DNA chips: an array of possibilities, Nature Biotechnol., 16, 27 (1998).Google Scholar
7. Pividori, M.I., Merkoçi, A. and Alegret, S., 0Biosens. Bioelectron., 15, 291 (2000).Google Scholar
8. Wang, J., Nucl. Acids Res., 28, 3011 (2000).Google Scholar
9. Fixe, F., Faber, A., Gonçalves, D., Prazeres, D.M.F., Cabeça, R., Chu, V., Ferreira, G. and Conde, J.P., Mat. Res. Soc. Symp. Proc. 723, O2.3.1 (2002).Google Scholar
10. in http://www.molecularprobes.comGoogle Scholar
11. Rose, A., Concepts in photoconductivity and allied problems, John Willey & Sons, USA (1978).Google Scholar
12. Rogers, Y.H. Jiang-Baucom, P. Huang, Z. Bogdanov, V. Anderson, S. and Boyce-Jacino, M.T. Anal. Biochem. 266 23 (1999).Google Scholar
13. Beier, M. and Hoheisel, J., Nucl. Acids Res., 27, 1970 (1999).Google Scholar