Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-28T11:47:39.288Z Has data issue: false hasContentIssue false

Optimized Silver Film over Nanosphere Surfaces for the Biowarfare Agent Detection Based on Surface-Enhanced Raman Spectroscopy

Published online by Cambridge University Press:  15 February 2011

Xiaoyu Zhang
Affiliation:
Department of Chemistry, Northwestern University, Evanston, IL 60208-3113,USA
Richard P. Van Duyne
Affiliation:
Department of Chemistry, Northwestern University, Evanston, IL 60208-3113,USA
Get access

Abstract

This work presents the rapid detection of Bacillus subtilis spores, harmless simulants for Bacillus anthracis, using surface-enhanced Raman spectroscopy (SERS) on silver film over nanosphere (AgFON) substrates. Calcium dipicolinate (CaDPA), a biomarker for bacillus spores, can be extracted effectively from spores with nitric acid and successfully detected by SERS. The highly tunable nature of AgFON optical properties was exploited to establish general optimization conditions. AgFON surfaces optimized for 750-nm laser excitation have been characterized by UV-vis diffuse reflectance spectroscopy. The SERS signal from extracted CaDPA was evaluated over the spore concentration range 10-15-10-12 M to determine the adsorption capacity of the AgFON surface and the limit of detection (LOD). These sensing capabilities have been successfully transitioned to an inexpensive, portable Raman spectrometer. Using the extraction method and this field-portable instrument, the anthrax infectious dose of 104 spores were detected with only a 5-second collection period on a one-month-old prefabricated AgFON substrate.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. McCreery, R. L., Raman Spectroscopy for Chemical Analysis, (Wiley, 2000)Google Scholar
2. Schatz, G. C. and Van Duyne, R. P., Electromagnetic Mechanism of Surface-Enhanced Spectroscopy, (Wiley, 2002)Google Scholar
3. Haynes, C. L. and Van Duyne, R. P., J. Phys. Chem. B, 107, 7426, (2003).Google Scholar
4. Nie, S. and Emory, S. R., Science, 275, 1102, (1997).Google Scholar
5. Kneipp, K., Wang, Y., Kneipp, H., Perelman, L. T., Itzkan, I., Dasari, R. R. and Feld, M. S., Phys. Rev. Lett., 78, 1667, (1997).Google Scholar
6. Sylvia, J. M., Janni, J. A., Klein, J. D. and Spencer, K. M., Anal. Chem., 72, 5834, (2000).Google Scholar
7. Stacy, A. M. and Van Duyne, R. P., Chem Phys Lett, 102, 365, (1983).Google Scholar
8. Kovacs, G. J., Loutfy, R. O., Vincett, P. S., Jennings, C. and Aroca, R., Langmuir Langmuir, 2, 689, (1986).Google Scholar
9. Dick, L. A., McFarland, A. D., Haynes, C. L. and Van Duyne, R. P., J. Phys. Chem. B, 106, 853, (2002).Google Scholar
10. Zhang, X., Yonzon, C. R. and Van Duyne, R. P., (Proc. SPIE-Int. Soc. Opt. Eng. 5221, San Diego, CA. 2003), pp82 Google Scholar
11. Jensen, T. R., Van Duyne, R. P., Johnson, S. A. and Maroni, V. A., Appl. Spectrosc., 54, 371, (2000).Google Scholar
12. Zhang, X., Young, M. A., Lyandres, O. and Van Duyne, R. P., J. Am. Chem. Soc., 127, 4484, (2005).Google Scholar
13. Litorja, M., Haynes, C. L., Haes, A. J., Jensen, T. R. and Van Duyne, R. P., J. Phys. Chem. B, 105, 6907, (2001).Google Scholar
14. Goodacre, R., Shann, B., Gilbert, R. J., Timmins, E. M., McGovern, A. C., Alsberg, B. K., Kell, D. B. and Logan, N. A., Anal. Chem., 72, 119, (2000).Google Scholar
15. Jarvis, M. R. and Goodacre, R., Anal. Chem., 76, 40, (2004).Google Scholar
16. Bailey, G. F., Karp, S. and Sacks, L. E., J. Bacteriol. 89, 984, (1965).Google Scholar
17. Walt, D. R.; Franz, D. R. Anal. Chem. 72, 738A, (2000).Google Scholar