Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-07T21:21:04.940Z Has data issue: false hasContentIssue false

Optically-Induced, Room-Temperature Oxidation of Gallium Arsenide

Published online by Cambridge University Press:  28 February 2011

Chien-Fan Yu
Affiliation:
Microelectronics Sciences Laboratories, Columbia University, New York, NY 10027
Michael T. Schmidt
Affiliation:
Microelectronics Sciences Laboratories, Columbia University, New York, NY 10027
Dragan V. Podlesnik
Affiliation:
Microelectronics Sciences Laboratories, Columbia University, New York, NY 10027
Richard M. Osgood Jr.
Affiliation:
Microelectronics Sciences Laboratories, Columbia University, New York, NY 10027
Get access

Abstract

Room-temperature, optically-induced oxidation of the gallium arsenide surface has been studied with laser radiation of different wavelengths. It was found that deep-ultraviolet light is much more effective in enhancing oxidation than near-ultraviolet or visible light. The growth rate of the oxide was also found to be drastically increased by the presence of chemisorbed water molecules on the surface.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Schafer, S.A. and Lyon, S.A., J. Vac. Sci. Technol. 19, 494 (1981).CrossRefGoogle Scholar
2. Petro, W.G., Hino, I., Eglash, S., Lindau, I., Su, C.Y. and Spicer, W.E., J. Vac. Sci. Technol. 21, 405 (1982).CrossRefGoogle Scholar
3. Bermudez, V.M., J. Appl. Phys. 54, 6795 (1983).Google Scholar
4. Bartels, F. and Mönch, W., Surf. Sci. 143, 315 (1984).Google Scholar
5. Bertness, K.A., Petro, W.G., Silberman, J.A., Friedman, D.J., and Spicer, W.E., J. Vac. Sci. Technol. A 3, 1464 (1985).Google Scholar
6. Offsey, S.D., Woodall, J.M., Warren, A.C., Kirchner, P.D., Chappell, T.I. and Pettit, G.D., Appl. Phys. Lett. 48, 475 (1986).CrossRefGoogle Scholar
7. Podlesnik, D.V., Gilgen, H.H., Willner, A.E. and Osgood, R.M. Jr, J. Opt. Soc. Am. B 3, 775 (1986).Google Scholar
8. Yu, C.F., Podlesnik, D.V., Schmidt, M.T., Gilgen, H.H. and Osgood, R.M. Jr, Chem. Phys. Lett. 130, 301 (1986).CrossRefGoogle Scholar
9. Carlson, T.A. and McGuire, G.E., J. Electron Spectrosc. 1, 161 (1972/73).Google Scholar
10. Gant, H. and Mönch, W., Surf. Sci. 105, 217 (1981).Google Scholar
11. Bdchel, M. and Lüth, H., Surf. Sci. 87, 285 (1979).Google Scholar
12. Webb, C. and Lichtensteiger, M., J. Vac. Sci. Technol. 21, 659 (1982).Google Scholar
13. Langren, G., Ludeke, R., Jugnet, Y., Morar, J.F., and Himpsel, F.J., J. Vac. Sci. Technol. B 2, 351 (1984).Google Scholar