Published online by Cambridge University Press: 15 February 2011
In this paper we discuss the use of optical-based flux monitoring (OFM) for real-time control of atomic antimony fluxes for applications in molecular beam epitaxy. Atomic antimony beams were generated using a two-zone cracking effusion cell. The product distribution of the source was characterized using a time-of-flight mass spectrometer employing resonance-enhanced laser ionization. A double-pass OFM system has been developed to monitor the atomic antimony beam that is capable of precise flux measurement during MBE growth.