Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T05:37:32.088Z Has data issue: false hasContentIssue false

Optical properties of silica glasses having O2 and Cl2 molecules

Published online by Cambridge University Press:  15 February 2011

Koichi Awazu
Affiliation:
Electrotechnical laboratory, Umezono 1-1-4, Tsukuba 305, Japan
Hiroshi Kawazoe
Affiliation:
Research Laboratory of Engineering Materials, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 227, Japan
Ken-ichi Muta
Affiliation:
Showa Wire & Cable Co., Ltd.Minami-Hashimoto, Sagamihara 229, Japan
Get access

Abstract

Oxygen or chlorine was incorporated into silica glasses by sintering porous soot rods under 02/He or C12/He atmosphere. In case of oxygen, the Schumann-Runge band of 02 molecule was found in VUV region. An absorption band at 4. 8eV having 1. 9eV emission was generated with irradiation of excimer laser. We proposed that such optical properties were due to 02 molecule trapped in glass because they were similar to photochemistry of 02 molecule in the gas phase which could be shown as:

When silica glasses were fabricated under chlorine ambient, a minor fraction was found to be present as Cl2 molecule trapped in the glass, which gives the absorption band at 3.8eV.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kohketsu, M., Awazu, K., Kawazoe, H. and Yamane, M., J. Non-Cryst. Solids, 95 & 96, 679 (1987).Google Scholar
2. Kohketsu, M., Awazu, K., Kawazoe, H. and Yamane, M., Jpn. J. Appl. Phys., 28, 615 (1989).Google Scholar
3. Kohketsu, M., Awazu, K., Kawazoe, H. and Yamane, M., Jpn. J. Appl. Phys., 28, 622 (1989).Google Scholar
4. Awazu, K., Kawazoe, H. and Yamane, M., J. Appl. Phys., 68, 2713 (1990).Google Scholar
5. Awazu, K., Kawazoe, H., Muta, K., Ibuki, T., Tabayashi, K. and Shobatake, K., J. Appl. Phys., 69, 1849 (1991).Google Scholar
6. Awazu, K., Kawazoe, H. and Muta, K., J. Appl. Phys., 69, 4183 (1991).CrossRefGoogle Scholar
7. Awazu, K., Kawazoe, H. and Muta, K., J. Appl. Phys., 70, 69 (1991).Google Scholar
8. Awazu, K., Kawazoe, H., Saito, Y., Watanabe, K. and Ando, T., Appl. Phys. Lett., 59, 528 (1991).Google Scholar
9. Awazu, K., Kawazoe, H., Watanabe, K. and Ando, T., J. Appl. Phys., 70, 2979 (1991).Google Scholar
10. Awazu, K. and Kawazoe, H., J. Appl. Phys., 68, 3584 (1990).Google Scholar
11. Chida, K., Hanawa, F., Nakahara, M. and Inagaki, N., Electron Lett. 15, 835 (1979).CrossRefGoogle Scholar
12. Izawa, T., Sudo, S. and Hanawa, F., Trans. Inst. Electron Commun. Eng. Jpn. E 62, 779 (1979).Google Scholar
13. Okabe, H., Photochemisty of small molecules (Wiley, New York, 1978), p. 241.Google Scholar
14. Griggs, M., J.Chem.Phys., 49, 857 (1968).Google Scholar
15. Lin, C. and DeMore, W., J. Photochem., 2, 161 (1973/4).Google Scholar
16. Abe, Y. and Clark, D., Mat. Sci. Lett. 9, 244 (1990).Google Scholar
17. Weeks, R. and Nelson, C., J. Am. Ceram. Soc. 43, 396 (1960).CrossRefGoogle Scholar
18. Gibson, G. and Bayliss, N., Phys. Rev. 44, 188 (1933).Google Scholar