Published online by Cambridge University Press: 01 February 2011
The optical properties of quantum wires (QWRs) grown using lateral composition modulation (LCM) were studied by photoluminescence (PL) measurement as a function cryostat temperature (Tcr). 3 stacked arrays of QWRs were formed by sequential growth of ∼ 180 Å-thick LCM layers (lateral period: ∼ 90 Å) induced by (InP)1/(GaP)1 short-period superlattices, and 200 Å-thick InGaP spacers at the growth temperature of 490 °C. The formation of QWRs was confirmed by a transmission electron microscopy measurement. By the analysis of the dependence of PL intensity and peak energy of the QWRs on Tcr, the origin of higher energy peak (H) and lower energy peak (L) were investigated. While behavior of the H peak is similar to that of an ordered InGaP, the L peak shows the insensitivity of PL peak energy to Tcr. This is attributed to compensation of the bandgap by competition of strain in the QWR region and indicates the L peak is related to the QWRs. Strong dependence of the L peak on the position of polarizer also supports this. Additionally, the PL peak intensity of the L peak has the maximum value not at the lowest Tcr (10 K) but at 50 K, while the H peak decrease continuously as T increases. We introduced the idea of compensation of the thermal expansion coefficient to explain this phenomenon.