Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-24T14:00:40.306Z Has data issue: false hasContentIssue false

Optical Properties of Porous ZnO Nanorods Grown by Aqueous Solution Method

Published online by Cambridge University Press:  01 February 2011

Sang Hyun Lee
Affiliation:
[email protected], Tohoku Univ., Applied Physics, Center for Interdisciplinary Research, Tohoku University6-3, Aramaki, Aobaku, Sendai, 980-8578, Japan, +81-22-795-4404
Hyun Jung Lee
Affiliation:
[email protected], Tohoku Univ., Graduate School of Environmental Studies, Tohoku University, 07 Aramaki-Aoba, Aoba-Ku, Sendai, 980-8579, Japan
Takenari Goto
Affiliation:
[email protected], Tohoku Univ., Center for Interdisciplinary Research, Tohoku University6-3, Aramaki, Aobaku, Sendai, 980-8578, Japan
Meoung-Whan Cho
Affiliation:
[email protected], Tohoku Univ., Institute for Materials Research, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan
Takafumi Yao
Affiliation:
[email protected], Tohoku Univ., Center for Interdisciplinary Research, Tohoku University6-3, Aramaki, Aobaku, Sendai, 980-8578, Japan
Get access

Abstract

ZnO nanorods were synthesized by chemical solution method at low temperature. The surface of nanorods was changed to porous by using thermal annealing and chemical etching. Surface morphology and their optical properties were changed according to annealing and etching condition. Photoluminescence from as-grown ZnO nanorods almost showed defect related emission in wide range from 450∼900 nm. After annealing at 500°C, the band-edge emission of ZnO was observed and emission at visible range was changed to green with decreasing red-orange. The surface morphology of ZnO nanorods was transformed to porous by chemical etching and it led to increase the intensity of band-edge emission about three times. The internal quantum efficiency for porous ZnO nanorods, which was calculated from ratio PL intensity at 10K and 300K, is about 21%. Also, the random lasing at porous ZnO nanorods was occurred at high optical excitation by a photon with traveling inside or outside of porous ZnO nanorod gets amplified by injection second photon before leaving porous ZnO nanorods.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. de Heer, W.A., Châtelain, A. and Ugarte, D., Science 270, 1179 (1995).Google Scholar
2. Choi, W.B., Chung, D.S., Kang, J.H., Kim, H.Y., Jin, Y.W., Han, I.T., Lee, Y.H., Jung, Y.E., Lee, N.S., Park, G.S. and Kim, J.M., Appl. Phys. Lett. 75, 3129 (1999).Google Scholar
3. Dabbousi, B.O., Rodriguez-Viejo, J., Mikulec, F.V., Heine, J.R., Mattoussi, H., Ober, R., Jensen, K. F. and Bawendi, M.G., J. Phys. Chem. B 101, 9463 (1997).Google Scholar
4. Mitchell, G.P., Mirkin, C.A. and Letsinger, R.L., J. Am. Chem. Soc. 121, 8122 (1999).Google Scholar
5. Zhao, M.-H., Wang, Z,-L. and Mao, S.X., Nano Lett. 4, 587 (2004).Google Scholar
6. Kind, H., Yan, H., Messer, B., Law, M. and Yang, P., Adv. Mater. 14, 158 (2002).Google Scholar
7. Konenkamp, R., Word, R.C. and Schlegel, C., Appl. Phys. Lett. 85, 6004 (2004).Google Scholar
8. Wang, H.T., Kang, B.S., Ren, F., Tien, L.C., Sadik, P.W., Norton, D.P., Pearton, S.J. and Lin, J., Appl. Phys. Lett. 86, 243503 (2005).Google Scholar
9. Zhang, Z., Saraf, G., Chen, Y., Wu, P., Zhong, J., Lu, Y., Chen, J., Mirochnitchenko, O. and Inouye, M., IEEE transactions on ultrasonics, ferroelectics, and frequency control 53, 786 (2006).Google Scholar
10. Cui, Y., Wei, Q., Park, H. and Lieber, C.M., Science 239, 1289 (2001).Google Scholar
11. Law, M., Greene, L.E., Johnson, J.C., Saykally, R. and Yang, P., Nature Mater. 4, 455 (2005).Google Scholar
12. Lee, S.H., Lee, H.J., Goto, H., Cho, M.-W. and Yao, T., Phys. Stat. Sol (c), accepted.Google Scholar
13. Ortiz, A., Garcia, M., Alonso, J.C., Falcony, C. and Hernández, J.A., Thin Solid Films 293, 103 (1997).Google Scholar
14. Vanheusden, K., Seager, C.H., Warren, W.L., Tallant, D.R. and Voigt, J.A., Appl. Phys. Lett. 68, 403, (1996).Google Scholar
15. Wu, L., Wu, Y., Pan, X. and Kong, F., Optical Mater. 28, 418 (2006).Google Scholar
16. Djurišić, A.B., Leung, Y.H., Tam, K. H., Ding, L., Ge, W.K., Chen, H.Y. and Gwo, S., Appl. Phys. Lett. 88, 103107 (2006).Google Scholar
17. Permogorov, S., Excitons, ed. Eashba, E. I., Sturge, M.D. (North-Holland, Amsterdam, 1982) p. 177.Google Scholar
18. Harada, C., Goto, H., Minegishi, T., Suzuki, T., Makino, H., Cho, M.W. and Yao, T., Curr Appl. Phys. 4, 633 (2004).Google Scholar
19. Chen, Y., Bagnall, D. M., Koh, H.-J, Park, K.-T., Hiraga, K., Zhu, Z. and Yao, T., J. Appl. Phys. 84, 3912 (1998).Google Scholar
20. Kim, S.-W., Fujita, S. and Fujita, S., Appl. Phys. Lett. 86, 153119 (2005).Google Scholar