Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-08T08:21:05.703Z Has data issue: false hasContentIssue false

Optical Properties and Photoexcitations in Regularly Alternating Conjugated Copolymers

Published online by Cambridge University Press:  16 February 2011

R. Tubino
Affiliation:
Istituto di Matematica e Fisica, Università di Sassari, Via Vienna 2,07100, Sassari, Italy
C. Botta
Affiliation:
Istituto di Chimica delle Macromolecole, CNR, Via Bassini 15,20133, Milano, Italy
S. Destri
Affiliation:
Istituto di Chimica delle Macromolecole, CNR, Via Bassini 15,20133, Milano, Italy
W. Porzio
Affiliation:
Istituto di Chimica delle Macromolecole, CNR, Via Bassini 15,20133, Milano, Italy
L. Rossi
Affiliation:
Dipartimento di Fisica “A. Volta”, Università di Pavia, Via Bassi 6, 27100, Pavia, Italy
Get access

Abstract

We report in this short paper a preliminary account on the design, preparation, optical characterization and photoexcitation of a class of novel conjugated polymers consisting of regularly alternating thiophene and benzene sequences, which Might represent Models for one-dimensional superlattices. Optical absorption and emission spectra suggest that the barriers produced by the phenylene Moieties do not interrupt the conjugation but can produce localization effects. Resonant Raman spectra indicate that a selective response of the thiophene Moiety occurs upon excitation with visible light. Moreover these Measurements confirm the presence of a confinement on the thiophene blocks, while the biphenil Moiety does not appear to feel the energy barrier and behaves as the corresponding polymer poly (paraphenylene) (PPP). CW photomodulation spectra show that the formation of long-lived bipolarons takes place only if the thienylenic Moiety is long enough to accomodate the lattice distortion.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Skotheim, T. A., Handbook of conducting polymers, Marcel Dekker, New York, 1986.Google Scholar
2. Yoshimura, T., Optics Commun. 70, 535 (1989).CrossRefGoogle Scholar
3. Nötzel, R. and Ploog, K. H., Adv. Mater. 5, 22 (1993).CrossRefGoogle Scholar
4. Jenekhe, S.A. and Chen, W.C., Mat. Res. Soc. Symp. Proc. 173, 589 (1990).CrossRefGoogle Scholar
5. Jenekhe, S.A., Chem. Mat. 3, 878 (1991).CrossRefGoogle Scholar
6. Jenekhe, S.A. and Chen, W.C., Appl. Phys. Lett. 57, 126 (1990).CrossRefGoogle Scholar
7. Yong, C., Renyuan, Q., Solid State Commun. 54, 211 (1958).CrossRefGoogle Scholar
8. Botta, C., Destri, S., Porzio, W., Rossi, L. and Tubino, R., in preparation.Google Scholar
9. Louarn, G., Mevellec, J.-Y., Buisson, J.P. and Lefrant, S., Synth. Met. 55, 587 (1993).CrossRefGoogle Scholar
10. Friend, R. H., Bradley, D.D.C. and Townsend, P.D., J. Phys. D: Appl. Phys. 20, 1367 (1987).CrossRefGoogle Scholar
11. Lanzani, G., Rossi, L., Piaggi, A., Pai, J., Zamboni, R. and Taliani, C., Chem. Phys. Lett, submitted.Google Scholar
12. Vardeny, Z., Eherenfreud, E., Brafman, O., Nowak, N., Schaffer, H., Heeger, A. J., and Wudl, F., Phys. Rev. Lett. 56, 671 (1986).CrossRefGoogle Scholar
13. Meyers, F., Heeger, A. J. and Brédas, J.L. J. Chem. Phys. 97, 2750 (1992).CrossRefGoogle Scholar
14. Stafstròm, S. and Brédas, J.L., Phys. Rev. B 38, 4180 (1988).CrossRefGoogle Scholar