Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T05:36:27.308Z Has data issue: false hasContentIssue false

Optical (Hyper)Polarizabilities of Small Silicon Clusters

Published online by Cambridge University Press:  28 February 2011

Tapio T. Rantala
Affiliation:
Departments of Physics & Astronomy and Chemistry, Center for Electronic & Electro-optic Materials, 239 Fronczak Hall, State University of New York at Buffalo, Buffalo, NY 14260 Department of Physics, University of Oulu, SF-90570 Oulu, Finland
Mark I. Stockman
Affiliation:
Departments of Physics & Astronomy and Chemistry, Center for Electronic & Electro-optic Materials, 239 Fronczak Hall, State University of New York at Buffalo, Buffalo, NY 14260 Institute of Automation & Electrometry, Siberian Branch of the USSR Academy of Sciences, 630090 Novosibirsk, USSR
Daniel A. Jelski
Affiliation:
Department of Chemistry, State University of New York, College at Fredonia, Fredonia, NY 14063
Thomas F. George
Affiliation:
Departments of Physics & Astronomy and Chemistry, Center for Electronic & Electro-optic Materials, 239 Fronczak Hall, State University of New York at Buffalo, Buffalo, NY 14260
Get access

Abstract

Electronic contributions to the optical (hyper)polarizabilities of small silicon clusters are theoretically determined. Geometries and the electronic structures of the clusters are established using the tight-binding model. The nonlinear polarizabilities are found to depend primarily on the symmetry of the cluster and prove to be high for the low-symmetry clusters. Possible experiments and applications are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Zhang, Q.-L., Liu, Y., Curl, R. F., Tittel, F. K. and Smalley, R. E., J. Chem. Phys. 88, 1670 (1988).Google Scholar
2. Liu, Y., Zhang, Q.-L., Tittel, F. K., Curl, R. F. and Smalley, R. E., J. Chem. Phys. 85, 7434 (1986).CrossRefGoogle Scholar
3. Martin, T. P. and Schaber, H., Z. Phys. 35, 61 (1979);Google Scholar
Martin, T. P. and Schaber, H., J. Chem. Phys. 83, 855 (1985).CrossRefGoogle Scholar
4. Chesnovsky, O., Yang, S. H., Pettiette, C. L., Craycraft, M. J., Liu, Y. and Smalley, R. E., Chem. Phys. Lett. 138, 119 (1987);Google Scholar
Kasuya, A. and Nishina, Y., Z. Phys. D 12, 493 (1989).Google Scholar
5. Wang, Y., Herron, N., Mahler, W. and Suna, A., J. Opt. Soc. Am. B 6, 808 (1989).CrossRefGoogle Scholar
6. Li, Y. Q., Sung, C. C., Inguva, R. and Bowden, C. M., J. Opt. Soc. Am. B 6, 814 (1989);Google Scholar
Neeves, A. E. and Birnboim, M. H., J. Opt. Soc. Am. B 6, 787 (1989);Google Scholar
Stroud, D. and Wood, V. E., J. Opt. Soc. Am. B 6, 778 (1989).CrossRefGoogle Scholar
7. Boyd, G. T., J. Opt. Soc. Am. B 6, 685 (1989).Google Scholar
8. Stucky, G. D. and MacDougal, J. E., Science 47, 669 (1990).Google Scholar
9. Horan, P. and Blau, W., Z. Phys. D 12, 501 (1989);Google Scholar
Sandroff, C. J., Harbison, J. P., Ramesh, R., Andrejco, M. J., Hegde, M. S., Hwang, D. M., Chang, C. C. and Vogel, E. M., Science 245, 391 (1989).Google Scholar
10. Schmitt-Rink, S., Miller, D. A. B., Chemla, D. S., Phys. Rev. B 35, 8113 (1987);CrossRefGoogle Scholar
Schmitt-Rink, S., Chemla, D. S. and Miller, D. A. B., Adv. Phys. 38, 89 (1989).Google Scholar
11. Raghavachari, K. and Rohlfing, C. M., J. Chem. Phys. 89, 2219 (1988).Google Scholar
12. Kupka, H. and Jug, K., Chem. Phys. 30, 23 (1989).Google Scholar
13. Ballone, P., Andreoni, W., Car, R. and Parrinello, M., Phys. Rev. Lett. 62, 292 (1989).Google Scholar
14. Chelikowsky, J. R. and Phillips, J. C., Phys. Rev. Lett. 63, 1653 (1989);Google Scholar
Chelikowsky, J. R., Phillips, J. C., Kamal, M. and Strauss, M., Phys. Rev. Lett. 62, 292 (1989).CrossRefGoogle Scholar
15. Stillinger, F. and Weber, T., Phys. Rev. B 31, 5262 (1981);Google Scholar
Tersoff, J., Phys. Rev. B 37, 6991 (1988);CrossRefGoogle Scholar
Biswas, R., Wang, C. Z., Chan, C. T., Ho, K. M. and Soukoulis, C. M., Phys. Rev. Lett. 63, 1491 (1989);Google Scholar
Mistriotis, A. D., Flytzanis, N. and Farantos, S. C., Phys. Rev. B 39, 1212 (1989).Google Scholar
16. Jelski, D. A., Wu, Z. C. and George, T. F., Chem. Phys. Lett. 150, 447 (1988);Google Scholar
Jelski, D. A., Wu, Z. C. and George, T. F., J. Cluster Sci. 1, 143 (1990).Google Scholar
17. Rantala, T. T., Jelski, D. A. and George, T. F., J. Cluster Sci. 1, 189 1990.Google Scholar
18. Tománek, D. and Schlüter, M. A., Phys. Rev. B 36, 1208 (1987).Google Scholar
19. Laasonen, K. and Nieminen, R. M., J. Phys.: Cond. Matter 2, 1509 (1990).Google Scholar
20. Chadi, D. J., Phys. Rev. B 29, 785 (1984).Google Scholar
21. Slater, J. C. and Koster, G. F. Phys. Rev. 94, 1498 (1954).Google Scholar
22. Soos, Z. G. and Ramasecha, S., J. Chem. Phys. 90, 1067 (1989)Google Scholar
[Erratum: J. Chem. Phys. 92, 5166 (1990)].Google Scholar
23. Gatz, C. R., Introduction to Quantum Chemistry (C. E. Merrill Publishing Company, Columbus, Ohio, 1971), p. 180.Google Scholar
24. Berry, H. G., Bromander, J., Curtis, L. J. and Buchta, R., Physica Scripta 3, 125 (1971).CrossRefGoogle Scholar
25. Lalama, S. J. and Garito, A. F., Phys. Rev. A 20, 1179 (1979);Google Scholar
Egbert, W. C., SPIE Proc. 824, 107 (1987);Google Scholar
Wu, J. W., Heflin, J. R., Norwood, R. A., Wong, K. Y., Zamani-Khamiri, O., Garito, A. F., Kalayanaraman, P. and Sounik, J., J. Opt. Soc. Am. B 6, 707 (1989).Google Scholar
26. Shen, Y. R., The Principles of Nonlinear Optics (Wiley, New York, 1984).Google Scholar
27. Yee, T. K. and Gustafson, T. K., Phys. Rev. A 18, 1597 (1978).Google Scholar
28. Kleinman, D. A., Phys. Rev. 126, 1977 (1962).Google Scholar
29. Marowsky, G., Chi, L. F., Mobius, D., Steinhoff, R., Shen, Y. R., Dorsh, D. and Rieger, B., Chem. Phys. Lett. 147, 420 (1988).Google Scholar
30. Kolenbrander, L. K. D. and Mandich, M. L., J. Chem. Phys. 92, 4759 (1990).CrossRefGoogle Scholar